

Deliverable D5.3 Call FoF-05-2016

AM-motion

A STRATEGIC APPROACH TO INCREASING EUROPE'S VALUE PROPOSITION FOR ADDITIVE MANUFACTURING TECHNOLOGIES AND CAPABILITIES

Grant Agreement Nº 723560

First draft AM roadmap

Deliverable number: D5.3

Document Details

Due date of Deliverable	M20
Lead Contractor for Deliverable:	RINA-C
Dissemination Level:	Public

Contributors:	RINA-C, PRODINTEC, TNO, TWI LIMITED,
	CEA, ERRIN, IDEA Consult, BRAINPORT,
	AIRBUS E, EPMA, SIEMENS, CECIMO,
	MATERIALISE.

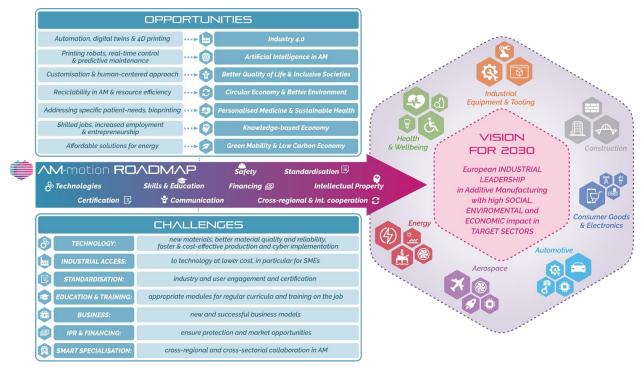
Table of contents

Abbr	reviations	•••••		4
Exec	utive Summa	ary		5
1.	Introduction	n		7
2.	Roadmappi	ing r	methodology	8
	2.1. Background: the FOFAM experience			
	2.2.	٨N	И-MOTION roadmapping approach and development steps	. 10
3.	AM-MOTIO	N V	'ision	. 12
4.	Target secto	ors	and products	. 17
	4.1.	He	ealth	. 18
	4.1.	.1.	Target Products	. 20
	4.1.	.2.	Regional Capabilities	. 21
	4.2.	Ae	erospace	. 23
	4.2.	.1.	Target Products	. 25
	4.2.	.2.	Regional Capabilities	. 26
	4.3.	Au	Itomotive	. 27
	4.3.	.1.	Target Products	. 29
	4.3.	.2.	Regional Capabilities	. 30
	4.4.	Со	onsumer Goods and Electronics	. 31
	4.4.	.1.	Target Products	. 32
	4.4.	.2.	Regional Capabilities	. 34
	4.5.	Ind	dustrial Equipment and Tooling	. 35
	4.5.	.1.	Target Products	. 36
	4.5.	.2.	Regional Capabilities	. 38
	4.6.	Со	onstruction	. 39
	4.6.	.1.	Target Products	. 41
	4.6.	.2.	Regional Capabilities	. 42
	4.7.	En	ergy	. 43
	4.7.	.1.	Target Products	. 45
	4.7.	.2.	Regional Capabilities	. 46
5.	AM-MOTIO)N ic	dentified actions	. 48
	5.1.	CR	OSS-CUTTING TECHNOLOGICAL actions	. 48
	5.3.	CR	OSS-CUTTING NON-TECHNOLOGICAL actions	. 51
	5.4. HEALTH gaps and actions			. 52
	5.5.	AE	ROSPACE gaps and actions	. 54

	5.6.	AUTOMOTIVE gaps and actions			
	5.7.	CONSUMER and ELECTRONICS gaps and actions58			
	5.8.	INDUSTRIAL EQUIPMENT and TOOLING gaps and actions60			
	5.9.	CONSTRUCTION gaps and actions	62		
	5.10.	ENERGY gaps and actions	64		
6. AN	1-MOTIOI	N expected impact	66		
	6.1.	Expected impact of target actions	67		
	6.1.	1. TECHNOLOGICAL CROSS-CUTTING impacts	68		
	6.1.	2. NON-TECHNOLOGICAL CROSS CUTTING impacts	72		
	6.1.	3. HEALTH impacts	74		
	6.1.4	4. AEROSPACE impacts	77		
	6.1.	5. AUTOMOTIVE impacts	80		
	6.1.	6. CONSUMER GOODS & ELECTRONICS impacts	82		
	6.1.	7. INDUSTRIAL EQUIPMENT AND TOOLING impacts	85		
	6.1.	8. CONSTRUCTION impacts	87		
	6.1.	9. ENERGY impacts	89		
7. Co	nclusion		91		
ANNEX A	A: List of E	European AM Related Projects	92		
ANNEX E	B: List of F	Regional AM Related Projects	105		
ANNEX [NNEX D: List of Enablers				
ANNEX E	E: AM-MC	DTION Gaps and actions details	150		

Abbreviations

3DP	3D Printing	
AM	Additive Manufacturing	
CAD	Computer-aided design	
CAGR	Compound Annual Growth Rate	
EC	European Commission	
FDA	Food and Drug Administration	
FoF	Factories of the future	
IP	Intellectual Property	
KETs	Key enabling technologies	
MRI	Magnetic resonance imaging	
OEM	Original equipment manufacturer	
RTO	Research Technology Organization	
VC	Value chain	



Executive Summary

In 2017, the Additive Manufacturing (AM) industry, consisting of all AM products and services worldwide, grew 21% to \$7.336 billion¹ and it is poised to grow up to \$21.50 billion by 2025². AM may play a pivotal role in changing the manufacturing paradigm and contributing to address the societal challenges of our time, such as global warming, energy transition, population ageing and decreasing resources.

AM-MOTION vision for 2030 foresees that Europe will improve its leading role in Additive Manufacturing, greatly impacting on the competitiveness of European industrial sectors. Additive Manufacturing will improve the quality of life of European citizens in terms of retention of high quality jobs in Europe, availability of customised, cleaner, safer and affordable products and increased access to cleaner energy, mobility and effective and personalised medicine.

Figure below summarises AM-MOTION Vision for AM in 2030, including the envisaged **opportunities and challenges** as well as the **areas of intervention which are covered by the roadmap** (i.e. technologies, standardisation, certification, skills and education, financing, intellectual properties, safety, communication, cross-regional and international cooperation).

AM-MOTION Vision

Based on the identified challenges and opportunities, **the current draft AM-MOTION roadmap** proposes future actions for the AM development and successful market uptake in target sectors:

¹ Wohlers, T. &. (2018). *Wohlers Report*. Colorado: Wohlers Associates Inc.

² Frost & Sullivan's Global 360° Research Team (May 2016), *Global Additive Manufacturing Market, Forecast to 2025,* Frost & Sullivan, Mountain View, California

- Health;
- Aerospace;
- Automotive;
- Consumer goods and Electronics;
- Industrial equipment and Tooling;
- Construction;
- Energy.

The roadmap includes also cross-cutting actions (technical and non-technical), covering several sectors.

AM-MOTION roadmap may be seen as an evolution of FOFAM³ Roadmap, which has been further developed and expanded in AM-MOTION project involving around 130 external experts through physical meetings and remote surveys.

The full draft Roadmap will be publicly available at the end of July 2018. In August-September 2018 the whole community will be asked to participate online to a public consultation.

The revision of the roadmap will lead to the release of the **Final AM-MOTION Roadmap**, to be presented at **"AMEF2018 Additive Manufacturing European Forum"** (Brussels, 23-24 October 2018).

³ https://cordis.europa.eu/project/rcn/193434_en.html

1. Introduction

The present document constitutes Deliverable D5.3 in the framework of the AM-Motion project "A strategic approach to increasing Europe's value proposition for Additive Manufacturing technologies and capabilities" (Project Acronym: AM-motion; Contract No.: 723560). This report is the result of activities performed within the framework of Work Package 5 "Roadmap Development", and more specifically on Task 5.3 "Roadmap Development" led by RINA-C. Task 5.3 (M13-M24) is focused on the development and release of the AM-MOTION European Research and Innovation Roadmap for successful market implementation of Additive Manufacturing (AM).

AM technologies refer to a group of technologies that build physical objects from Computer Aided Design (CAD) data. The main difference between traditional and AM-technologies is that parts produced via AM are created by the consecutive addition of liquids, sheet or powdered materials in layers, instead of removing material to generate a desired shape which is common to traditional technologies such as milling or drilling. Additive Manufacturing has many common names, involving rapid manufacturing, direct manufacturing, 3D-printing, rapid tooling and rapid prototyping. In line with previous studies⁴, we consider AM as the umbrella term for additive technologies; the terms direct manufacturing, rapid tooling and rapid prototyping refer to the application of AM.

The overall aim of AM-MOTION roadmap is to create a common vision for successful European leadership in additive manufacturing, highly impacting of societal challenges of our time, and to suggest common goals and specific actions to solve the existing gaps between the current status and the target vision.

The roadmap methodology used to build the roadmap is presented in Chapter 2. The roadmap is an evolution of the recent FOFAM AM Roadmap, extensively revised and further developed in terms of sectors, products and identified gaps and actions and related content with the help of external experts (in technical and non-technical aspects). Chapter 3 presents the vision of the roadmap, including opportunities and challenges foreseen for the successful market uptake of AM.

Chapter 4 describes the **target sectors** addressed by the roadmap. After a general description of each sector, **target product groups** (and examples of specific products) and the **regional capabilities** are presented by sector, including also maps of regional and national AM projects. Details of European, national and regional projects are reported in <u>annex A and B</u>, respectively. Information on key enablers (i.e. AM actors) are reported in <u>annex C</u>.

Chapter 5 reports the **identified actions for future research and innovation activities**, dividing them between technical and non-technical actions. In turn, technical actions are segmented in crosscutting (i.e. relevant for more/all sectors) and sectorial ones. **Details of each action** in terms of identified gap with the description of the current context, description of proposed activities, initial and target TRL etc. are reported in <u>annex D</u>.

Chapter 6 describes the **impact** of the identified actions, considering the results of semiquantitative estimation with selected key impact indicators performed by the experts in workshops and surveys. The **conclusion** (**Chapter 7**) summarises the key results of this Draft Roadmap and the **next plans for the release of the final Roadmap (October 2018)**, which will be a revision of the present document and will include also model for business collaboration (as resulting from WP4 activity).

⁴ Prof. Dr.-Ing. Jürgen Gausemeier . Thinking ahead the Future of Additive Manufacturing –Exploring the Research Landscape. Heinz Nixdorf Institute, University of Paderborn – Paderborn 2013.

2. Roadmapping methodology

The roadmapping activity performed to develop this **AM-MOTION European Research and Innovation Roadmap** is a method to produce strategic plans and ideas for future successful development of AM- based products relevant in particular for the identified sectors:

- Health;
- Aerospace;
- Automotive;
- Consumer goods and Electronics;
- Industrial equipment and Tooling;
- Construction;
- Energy.

Details of the applied methodology are explained in the sections below.

2.1. Background: the FOFAM experience

AM-MOTION roadmapping approach is built on the experience the strategic research agendas developed by the European Technology Platform on AM "<u>AM-Platform</u>" and the methodology developed under the previous <u>FOFAM CSA</u> (2015-2017, grant agreement n° 636882). FOFAM AM roadmap focused on five sectors (i.e. those addressed by the present roadmap except energy and construction), identifying technical and non-technical actions to be performed at short, medium or long term in order to achieve the final target, i.e. the commercialisation of AM machines, products and related services.

The sectors and market addressed in FOFAM roadmap were selected together with external experts (workshop September 2015), according to the FoFAM project need to be relevant to the technological advancements across Europe and their potential to positively influence societal and economic challenges. These sectors were also the focus of a number of relevant documents i.e. the <u>"European Additive Manufacturing Strategic Research Agenda"</u>⁵, which highlights priority areas for future development in AM.

For each of selected sectors, a **value chain (VC) approach** was followed to find the gaps preventing complete market deployment and to propose the corresponding needed actions. The VC is defined as the set of activities from research to market, along a process to generate and add value. The steps of the value chain considered in the roadmap for gap analysis are shown in Figure 2.1

⁵ www.rm-platform.com/linkdoc/AM SRA - February 2014.pdf

Figure 2.1: Steps of AM value chain in FOFAM and AM-MOTION roadmaps

The actions proposed are classified in cross-cutting actions relevant to all sectorial value chains, responding both to technological and non-technological gaps and actions specific to a particular value chain. The timeline for the proposed actions was also indicated considering short-term (2017-2020), medium term (2020–2025) and long-term actions (beyond 2025). Moreover, technical gaps include the current Technology Readiness Level (TRL). TRLs are based on a scale from 1 to 9 with 9 being the most mature technology⁶, as shown in Table 2-1.

TRL	Description
1	Basic principles observed
2	Technology concept formulated
3	Experimental proof of concept
4	Technology validated in lab
5	Technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies (KETs))
6	Technology demonstrated in relevant environment (industrially relevant environment in the case of KETs)
7	System prototype demonstration in operational environment
8	System complete and qualified
9	Actual system proven in operational environment (competitive manufacturing in the case of key enabling technologies; or in space)

Table 2-1 Description of Technology Readiness Levels (TRL)

The FOFAM plans for future actions for each sector were developed as shown in Figure 2.2 , which present the example of the heath sector.

trl_en.pdf

6

http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-

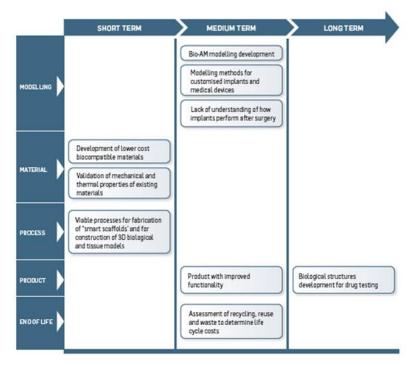


Figure 2.2: Example of FOFAM plans for future action – the health sector

2.2. AM-MOTION roadmapping approach and development steps

AM-MOTION Roadmap starts from the main funding of the FOFAM Roadmap, further developed and expanded by means of combination of desk research (integrating the results of key initiatives in AM⁷) and working group sessions. In particular, AM-MOTION roadmap has adopted the same **Value Chain approach** of FOFAM, and it focuses on **7 sectors**, considering sectorial and cross-cutting actions to solve current gaps, both technical and non-technical ones. In addition to FOFAM, AM-Roadmap starts from a **VISION for European AM in 2030, identifying key challenges and opportunities for successful market uptake of AM products.** In this framework, for each sectors, **target product groups** have been identified and linked with specific future actions aimed at solving current gaps. The roadmap includes a semiquantitative **impact assessment** of the identified actions, considering economic, social and environmental key impact indicators (KPIs). The roadmap integrate AM-MOTION findings in terms of **regional capabilities in AM** (maps of regional and national projects by sector) and suggestions on **possible business collaboration models**.

The core AM-Motion roadmapping and networking activity was performed by the whole consortium and through the interaction between 5 Expert groups formed by selected experts in different technological and non-technological areas and chaired by project partners, involving overall 100 experts:

Industrial EWG: representing the key AM industrial players from different sectors and VC segments.

⁷ E.g. The 3D printing Pilot of the Vanguard Initiative (<u>http://www.s3vanguardinitiative.eu/cooperations/high-performance-production-through-3d-printing</u>); EC Report- EASME Tender "Identifying current and future application areas, existing industrial value chains and missing competences in the EU, in the area of additive manufacturing (3D-printing)". 2016.; Lloyd Register Foundation. Roadmap for additive manufacturing. 2017.

- Materials & process EWG: Main players from industry and RTDs working on material development/production for AM and process development, including machine builders, software developers, post-processing experts.
- Non-technological aspects EWG: experts working on non-technological aspects such as standardisation, IPRs or education.
- Regional Development EWG: representing the regions with interest and/or capabilities on AM.
- Financial EWG: Financial experts and investors.

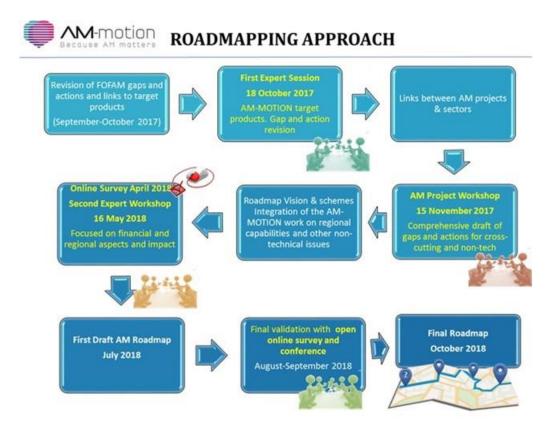


Figure 2.3: AM-MOTION Roadmapping steps

The Figure 2.3 summarises the main AM-MOTION roadmapping steps, from the revision of FOFAM gaps to the release of and actions to the release of the present draft AM Roadmap up to the final release in October 2018. Detailed results of expert sessions are reported in deliverables D5.1 and D5.2.

3. AM-MOTION Vision

Global warming, energy transition, population ageing and decreasing resources present us with immense challenges. In order to deal with these, we need fresh approaches, technological advances and clear implementation strategies. In this framework, Additive Manufacturing may play a pivotal role in changing the manufacturing paradigm and contributing to address the societal challenges of our time. For example, lightweight production and functional complexity enabled by AM technologies can help to reduce the consumption of resources for the process and the product itself, streamline manufacturing processes and make more sustainable products.

AM-MOTION vision for 2030 foresees that Europe will improve its leading role in Additive Manufacturing, greatly impacting on the competitiveness of European industrial sectors. Additive Manufacturing will improve the quality of life of European citizens in terms of retention of high quality jobs in Europe, availability of customised, cleaner, safer and affordable products and increased access to cleaner energy, mobility and effective and personalised medicine.

Figure 3.1 summarises AM-MOTION Vision for AM in 2030, including the envisaged **opportunities and challenges** as well as the **areas of intervention which are covered by the roadmap** (i.e. technologies, standardisation, certification, skills and education, financing, intellectual properties, safety, communication, cross-regional and international cooperation).

The following lists describes some of the upcoming **opportunities** offered by market uptake of AM technologies:

• Additive Manufacturing is one of the pillars of the Fourth Industrial Revolution (also known as Industry 4.0), which is a transformation that makes it possible to gather and analyse data across machines thus enabling faster, more flexible, and more efficient processes to produce higher-quality goods at reduced costs with greater agility.⁸. In particular, AM can highly contribute to Industry 4.0 approaches by increasing process automation and the intrinsic digital core of AM manufacturing technologies make them relatively easy to use effectively digital twin approaches⁹. The application of digital twin in AM-enabled value chains can allow companies to have a complete digital footprint of their products from design and development through the end of the product life cycle. The digital twin may help to solve physical issues faster by detecting them sooner, predict outcomes to a much higher degree of accuracy, design and build better products, and, ultimately, better serve their customers. Finally, AM approaches includes recent breakthroughs as <u>4D Printing</u>, which is a mean to enable smart and Internet of Things¹⁰ functionalities in AM products. In fact, 4D Printing is a combination of 3D printing and the fourth dimension, which is time and/or the change of functionalities. This technique allows a printed object to be programmed to carry out shape change

⁸ <u>https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/</u>

9 The digital twin is a near-real-time digital image of a physical object or process that helps optimize business performance. From https://www2.deloitte.com/insights/us/en/focus/industry-4-0/digital-twin-technology-smart-factory.html

¹⁰ The Internet of Things (IoT) is the network of physical devices, vehicles, home appliances, and other items embedded with electronics, software, sensors, actuators, and connectivity, which enables these things to connect and exchange data, creating opportunities for more direct integration of the physical world into computer-based systems, resulting in efficiency improvements, economic benefits, and reduced human exertions. More info on: Internet of Things: Science Fiction or Business Fact?" Harvard Business Review. November 2014.

while adapting to its surroundings. This allows for mastered self-assembly, multi-functionality, and self-repair and <u>sensoring capabilities</u>.

- Bringing Artificial Intelligence to the world of AM can lead to faster and more precise processes, by giving smart advice on the choices to make, both in terms of design, of materials and of technologies, especially in presence of <u>control and monitoring systems</u> (including in line and real-time ones) and <u>predictive maintenance</u> approaches. When coupled with <u>robotic arms</u> for printing large/complex shapes, artificial intelligence algorithms enable machine to see, create, and even learn from their mistakes during the printing process, thus being able to produce complex, large and precise patterns without sacrificing speed, as recently showcased by the company Ai Build¹¹.
- <u>High degree of product customisation and human-centred approach</u> offered by AM will contribute to improve the **quality of life**, with affordable and high quality products built based on customer needs, and also potentially address specific needs of the growing elderly population or of the people with physical impairments, thus building more <u>inclusive societies</u>. Co-creation approaches, involving researchers, industrial end-users and final customers in the design process, will contribute to EC strategies towards more **inclusive and Responsible Research and Innovation** (RRI).
- AM may play a lead role in the **Circular Economy** for example by producing high added-value products from recycled or bio-based powders and enabling full re-use of AM by-products in new products. The exploitation of the full potential of AM will also lead to resource and energy saving in the whole value chain and in particular in manufacturing and transportation, thus contributing to the **environment**.
- AM presents transformative potential manufacturing methods in the health sector being able to
 provide <u>patient-specific solutions</u> (e.g. from smart wheelchairs to orthopaedic implants), thus
 enabling **Personalised Medicine** approaches, which in the medium term can be <u>affordable for most
 of the population</u>. The advent of <u>Bioprinting¹²</u>, with its ability to create complex geometries and
 microarchitectures that mimic tissue complexity, can offer innovative solutions in the field of tissue
 engineering (i.e. printing biological tissues and potentially even organs) for patient-specific
 regenerative medicine and drug testing.
- AM full market deployment will offer <u>new employment and investment opportunities</u> in several sectors enabling industries (including SMEs) to compete in highly aggressive and complex commercial environments. Furthermore, the new knowledge gained such multi-disciplinary and multi-sectorial domain will contribute to the <u>improvement of workforce skills and education</u> in European Knowledge-based economy, i.e. increasingly based on knowledge and information sharing.
- Finally, AM technologies can contribute to the availability at <u>low cost of highly efficient green energy</u> solutions (e.g. renewable energy components and energy storage solutions), thus contributing to the EC 2050 Low Carbon Economy Roadmap¹³, as well as to EC plans for sustainable transportation¹⁴.

¹¹ https://www.digitaltrends.com/cool-tech/ai-build-wants-to-change-the-way-we-build-the-future/

¹² Bioprinting can be defined as "the use of 3D printing technology with materials that incorporate viable living cells, e.g. to produce tissue for reconstructive surgery" (<u>https://en.oxforddictionaries.com/definition/bioprinting</u>)

¹³ <u>https://ec.europa.eu/clima/policies/strategies/2050_en</u>

¹⁴ <u>https://ec.europa.eu/transport/themes/sustainable_en</u>

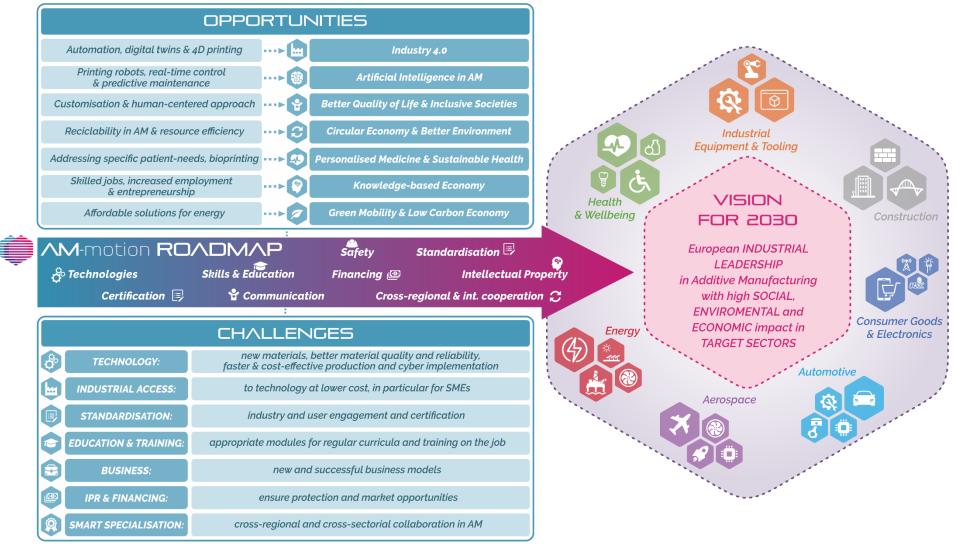


Figure 3.1: AM-MOTION Vision

However, Europe must address several **technical and non-technical challenges**, which may hinder AM full development and market success:

- **Technology**: the availability new breakthrough materials and of advanced materials with better quality, reliability and affordability, together with faster and cost-effective manufacturing processes, integrating effectively industry 4.0 approaches, with focus on automated monitoring and control mechanisms as well as advanced design, modelling and simulations.
- Industrial access to technology at low prices. Industries (especially SMEs) in periods of limited resources find difficult to keep pace with the emerging innovation in AM, which may require the use of expensive machines and/or can be used effectively by highly-skilled workforce with multidisciplinary curricula. There is risk for European SMEs to stay behind without being able to compete in such highly technological arena.
- Standardisation requires effort from individual specialists on the short term while the gains will be on the long term for a wide community. From one side, there is need to increase industry engagement on standards development; from another side, standards harmonization will have a significant influence on the long-term perspective. Harmonizing standards can be very time consuming, but standards are needed for the uptake of technologies. Moreover, in order to provide manufacturers with the greatest opportunity to exploit AM and provide confidence to manufactures and end-users that parts are safe, reliable and robust, an early publication of AM Certification Guidelines is paramount.
- Education and training: industries are currently facing some obstacles to find out the missing necessary people (technicians, engineers, designers and operators) specialized in technical and non-technical aspects of AM. The demands on—and expectations for—AM talent are high, especially because the technical and engineering skills required vary widely and because AM professionals are expected to be at the same time creative, and able to constantly adapt to new developments. There is need for proper communication campaigns, industry involvement in education and training aspects, delivering proper learning contents at all levels, specific educational programmes, workplace training, on-line education and reskilling actions for current work force.
- **New business models:** Bringing prototypes to production by securing the reproducibility of application remains a critical point for the industry. AM is still perceived too much as a technology solution instead of a business solution. There is need for availability of effective business models, able to address all the emerging opportunities (including co-creation platforms, provision of AM as a service etc.).
- **IPR and Financing**: -IPR Regimes should be reflected upon as to ensure protection without hampering market entry. Protection should be further ensured (IPR enforcement) and new IP-based reward systems should be thought of as to foster the development and commercialisation of AM-based products. In particular, it is important to give clearer guidance on defining for example whether a CAD file could benefit from copyright protection or other IP protection and build-up of a set of use cases in which IP can be used as an inclusion tool instead of exclusion tool.

Smart Specialisation: as reported in previous studies¹⁵, the European AM landscape however remains fragmented. The concentration of AM capabilities in specific Western European regions leaves a picture of leading regions specializing in particular segments of the AM value chain, covering both supply and demand sides. Eastern (and to some extent Southern) Europe is however at a discovery stage: only a limited number of 3D-printer manufacturers and specialized service providers could be identified in Eastern European regions. In these regions, most efforts are being made in key RTOs where public investments contributes to the absorption and development of AM knowledge and technologies. In order to enlarge industrial research and business opportunities, cross-regional and cross-sectorial cooperation is required. In this framework, collaborations among S3 Smart Specialisation Thematic Platforms - SSTPs (up to now European Commission set up SSTPs for interregional cooperation on Industrial Modernisation, Agri-Food and Energy) would be important to enhance AM penetration in traditional sectors and to foster cross-contamination between western and eastern regions.

AM-MOTION Roadmap aims to catch the foreseen opportunities and address the described challenges by suggesting recommendations focusing on industrial sectors of high economic, social and environmental impact, described in the subsequent chapter.

¹⁵ EC report- "Identifying current and future application areas, existing industrial value chains and missing competences in the EU, in the area of additive manufacturing (3D-printing)". EASME Tender 2016. I by IDEA Consult, AIT, VTT, CECIMO

4. Target sectors and products

According to Wohlers Report 2018¹⁶: "In 2017, the AM industry, consisting of all AM products and services worldwide, grew 21% to \$7.336 billion. The growth in 2017 compares to 17.4% growth in 2016 when the industry reached \$6.063 billion and 25.9% growth in 2015... The total industry estimate of \$7.336 billion excludes internal investments from the likes of Airbus, Adidas, Ford, Toyota, Stryker, and hundreds of other companies, both large and small. A surprising number of the \$1-5 billion companies – many of which are unfamiliar to most of us – are investing in AM R&D (research and development)." This demonstrate that this is not a market segment that is declining, as shown in Figure 4.1, Additive manufacturing is poised to grow at a rate of 15.0% (CAGR, 2015–2025)¹⁷

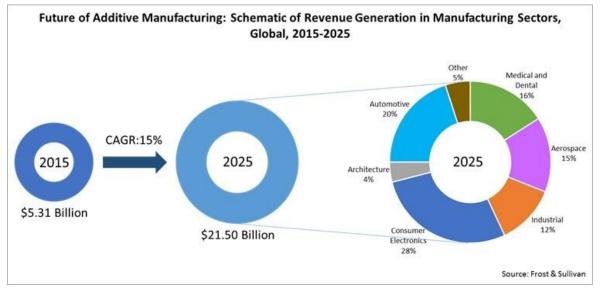


Figure 4.1: 3D Printing Market Potential (Source: Frost & Sullivan)

Advancements in additive manufacturing technology have expanded its applications across various industries; however, the challenge for companies is understanding how progress can impact existing business functions. Furthermore, as the adoption of the technology grows, the value and potential of AM for promising applications can vary from one sector to another.

Adoption of AM has been highest in industries where its higher production costs are outweighed by the additional value AM can generate: improved product functionality, higher production efficiency, greater customization, shorter time to market (that is, improved service levels), and reduced obsolescence, particularly in asset-heavy industries. Engineering-intensive businesses such as aerospace, automotive, and medical can accelerate prototyping, allowing them to explore completely new design features or create fully individualized products at no extra cost. High-value/lower-volume businesses see faster, more flexible manufacturing processes, with fewer parts involved, less material wasted, reduced assembly time for complex components, and even materials with completely new properties created. Finally, spare-parts-intensive businesses in fields such as maintenance, repair, and overhaul get freedom

¹⁶ Wohlers, T. &. (2018). *Wohlers Report*. Colorado: Wohlers Associates Inc.

¹⁷ Frost & Sullivan's Global 360° Research Team (May 2016), *Global Additive Manufacturing Market, Forecast to 2025,* Frost & Sullivan, Mountain View, California

from obsolete parts, faster time to market, more local and on-demand production opportunities, and independence from traditional suppliers¹⁸.

The AM-Motion roadmap focus in particular on the following top-level sectors:

Figure 4.2: AM-Motion key sectors

A brief overview on the market potential, along with key innovative AM products for each sector identified is reported below.

4.1. Health

Health is one of the most valuable aspects of anyone's life, which makes this sector one of the world's largest and fastest-growing industries, consuming over 10% of gross domestic product (GDP) of most developed nations. Healthcare applications accounted for 12.2% of the related revenue for their AM market¹⁹ with a share that will likely reach \$450m by 2020²⁰. Equally, the medical sector has seen 25% compound growth in the AM market every year since 2009²¹.

AM offers high added value to a number of applications and has already established itself as strong sector using the technology. The dental market currently holds the largest share in AM with hip and knee implants becoming the second largest area of the healthcare sector. In dental AM is widely adopted for the production of crowns, bridges, drill guides and dental aligners The AM hip implant cup was one of the first applications used in large production quantities mainly owning to this promotion of bone ingrowth. Other early acceptance of applications include visualisation models, hearing aids, hip implants, teeth braces and drilling guides.

²⁰ Global metal additive manufacturing market 2016-2020 Technavio Inifiniti Research Limited 2015

 ¹⁸ Jörg Bromberger and Richard Kelly, <u>Additive manufacturing: A long-term game changer for manufacturers</u>, September 2017
 ¹⁹ Wohlers, T. &. (2016). Wohlers Report. Colorado: Wohlers Associates Inc.

²¹http://www.medicalplasticsnews.com/why-is-2016-the-year-for-additive-manufacturing-in-the-medic/

Figure 4.3: 3D printed acetabular cups with integrated Trabecular Structures for improved osseointegration (Source <u>www.arcam.com</u>)

Moreover, AM is being used for the creation of assistive, surgical and prosthetic devices and customised implants, with a typical focus on non-standard, complex or accuracy sensitive cases, where models for pre-analysis and for practicing the actual surgery are also developed;. Here AM is able to bring significant improvements due to the nature of the process that allows for complex parts to be produced accurately and to the patient's specific needs and profile. Thus, reducing the removal of healthy bone, eliminating the need for bone grafting whilst promoting effective planning of implantation/surgery and shortening the time of anaesthesia and increasing implant life particularly in an era of an ageing population²².

Current research interests also focus in bio-printing of skins and organs, including the production of bone and cartilage scaffolds. Although still in its infancy, 3D bio-printing offers additional advantages over the traditional regenerative method, particularly in bone and scaffold regeneration, such as highly precise cell placement and high digital control of speed, resolution, cell concentration and drop volume²³.

Other growing areas of focus in this sector are also well-being (including pharma) and food, where the key drivers are the possibility for personalisation, rapid experimentation, on demand supply and of having novel functions and forms, offered by these technologies.

On the other hand, products for use in the health sector are often critical and need to meet very high standards regarding reliability, safety, bio-compatibility and require certification (e.g. CE mark according EEC/93/42 for Europe or US food and drug administration (FDA-approval for USA)), which slows down the utilisation of new technologies and especially materials.

There are a number of key drivers for the healthcare sector to adopt AM and hence increase the potential impact. These include:

- Personalisation
- Mass customisation
- Efficient bio-compatibility
- Promotion of healthy bone ingrowth after surgery
- Integration of medicine and healthcare through digital innovation
- Increased efficiency of supply chain
- Reduced lead time
- Quicker response times

²² Wohlers, T. &. (2016). Wohlers Report. Colorado: Wohlers Associates Inc.

²³ Vincent Bonneau & Hao Yi, IDATE; Laurent Probst, Bertrand Pedersen & Olivia-Kelly Lonkeu, PwC (January 2017), <u>The disruptive nature of 3D</u> <u>printing</u>, EC - Digital Transformation Monitor

4.1.1. Target Products

In the Health sector there are a number of **key innovative AM products.** As shown in 4.4, eight main product groups were identified. The detailed list of products for each group is reported in Table 4.1.

Figure 4.4: Health key product groups

	PRODUCT GROUP	PRODUCTS
eral)	Medical Implants	 Dental implants (stems, Crowns, Bridges) 4D Biocompatible Implants Biodegradable Implants Other endo-prostheses: Orthopaedic and cardiovascular implants
K	Living Tissues & Organs	 Bioprinted constructs for tissue engineering Bioprinted organs for transplantation (*) Bioprinted cartilages 3D printed scaffolds for tissue engineering
Ė	Assistive & Prosthetic Devices	 Orthoses Flexible supports (instead of rigid cast) Prosthetic limb Advanced / Individualized hearing aids Esoskeletons Bespoke assistive devices for elderly and disability (crutches, wheelchairs etc.)
S.C.	Surgical Guides, Tools & Models	 Customised surgical guides and tools (e.g. guides for drilling and for seaming) Case-specific surgical models (focus on soft tissues) Models for communication with patients and surgical planning
	Other Customized Products	 Special soles and other shoe parts for sports and orthopaedics Flexible supports for orthopaedics (instead of rigid cast).

	PRODUCT GROUP	PRODUCTS
•	Other Dental Products	 Crowns Bridges braces dental aligners dentures Osteotomies tweezers
٣	Food	 3D Cooked food Consumable "food inks" In-house 3D Printers Personalised Diet
<i>S</i>	Pharmaceutical Products	 Drugs Drug Delivery Systems with Smart Biocompatible Materials

(*) High challenging and long term target; under scientific discussion.

4.1.2. Regional Capabilities

According to the AM-motion mapping exercise of 18 European regions, the health industry appears as one of the sector where most of the regions apply AM to one extent or another. Key players from the regions Asturias, Valencia, Basque Country, Catalonia, Flanders, Normandy, Noord-Brabant, East Wales, Thüringen and Norte are involved with AM in the health sector.

Moreover, within the Vanguard 3DP pilot²⁴, a Health demo case project has been proposed by Emilia Romagna region (Italy). Current interested regions are: Saxony, Wallonia, Nordrhein-Westfalen, East Netherlands and Flanders, Emilia Romagna. The case aims at developing cross regional demonstration activities in the fields of 3D printed external orthosis and internal implants/prostheses. In the long term, the main objective seeks to demonstrate the feasibility, the value, the sustainability and the efficacy, as well as safety, of the 3DP technology once applied to medical problems.

Here below (Figure 4.5) is reported a map showing the national and regional activity (based on number of projects) in the Health sector. Germany, France, UK and Spain are the countries with higher number of projects related to the health sector. In Germany half of the listed projects focus on dental products, while in France different projects are related to bioprinting for bone tissue. In addition, a couple of projects from Spain focus on bioprinted scaffolds and osseointegration, with attention to 3D printed food. Projects from UK deal more on optimization of materials and processes.

²⁴ <u>https://s3vanguardinitiative.eu/cooperations/high-performance-production-through-3d-printing;</u> <u>https://www.s3vanguardinitiative.eu/sites/default/files/docs/general/vanguard_initiative_flyer_3dp_0_002_0.pdf</u>

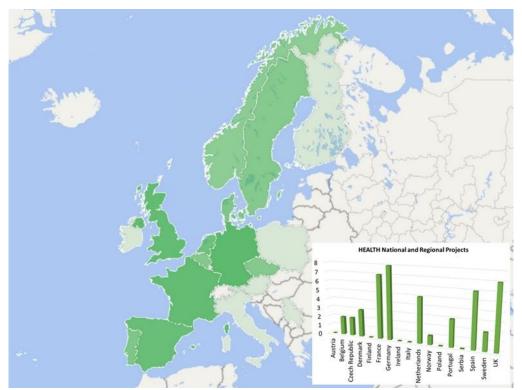


Figure 4.5: HEALTH - Map of National and Regional Projects

The complete list of national and regional projects divided by country can be found in ANNEX B.

4.2. Aerospace

The Aerospace sector has been one of the early adopters of 3D printing. According to the Wohlers report this industrial sector has grown by 4.3% in 2015 and is the second largest sector for AM²⁵. Currently represents about 16% of the global AM market²⁶ with a share that is predicted to reach \$1bn by 2021²⁷. The aerospace industry includes design, manufacturing and operation of aircrafts and spacecrafts. Many examples of niche components being made and supplied using various forms of AM²⁸ are available, this is mainly owing to the advantages AM provides in terms of reducing the weight of the components without sacrificing their performance, and reducing the buy-to-fly ratio. By utilizing topological optimisation and other digital modelling tools new materials and digital manufacturing, parts can be designed to be much lighter but still present equal or even better performance(an example is shown in Figure 4.6),. In addition, part consolidation i.e. printing parts in a single piece instead of several fitted together, reduces assembly costs. Parts are used in rather small quantities, and they have often complex geometries as well as advanced materials, which might be challenging to manufacture by conventional means²⁹.

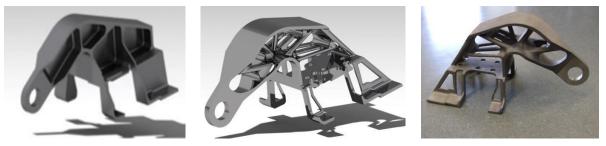


Figure 4.6: Topology optimization of structural hinge and manufacturing in Titanium (courtesy of PRODINTEC)

The main focus markets of AM in this sector are engines and aircrafts interior parts, this is also demonstrated by last years significantly growing number of projects in pre-production and flight testing for aircraft engine manufacturing. Other applications, such as UAV's parts are also fast growing markets.

As for the health sector, the aviation industry is strictly regulated. Safety is always the first driver in the aerospace industry; therefore the AM introduction has had to take into account the need to verify the compliance with all existing regulations around the world. The complete strategy is subject to a continuous process of validation, verification and agreement with all applicable Airworthiness Authorities. In more recent times, the industry is making significant moves to qualify AM parts.

There are many other examples of the AM benefits being capitalised on by the Aerospace industry showing that there are a number of key drivers for this sector for the adoption and development of AM and hence potential areas of impact. These include:

- Light weighting
- Energy usage (improved fuel efficiency)

```
https://ec.europa.eu/growth/content/report-3d-printing-current-and-future-application-areas-existing-industrial-value-chains-0_en
```

²⁵ Wohlers, T. &. (2016). *Wohlers Report.* Colorado: Wohlers Associates Inc.

²⁶ DeSilva, R. (2015, November). Debunking the myths of Additive Manufacturing. Retrieved July 22, 2016, from Additive Manufacturing Summit: <u>http://www.additivemanufacturingsummit.com/media/1003367/34746.pdf</u>

²⁷ Smartech. (2014, August). Additive Manufacturing in Aerospace: Strategic Implications. Retrieved July 22, 2016, from Smartech Publishing : https://www.smartechpublishing.com/images/uploads/general/AerospaceWP.pdf

 ²⁸ Additive Manufacturing Platform. (2014). Additive Manufacturing Strategic Research Agenda. Brussels : Additive Manufacturing Platform.
 ²⁹ IDEA Consult, VTT Technical Research Centre of Finland Ltd, AIT Austrian Institute of Technology and CECIMO (2016). Report on 3D-printing: Current and future application areas, existing industrial value chains and missing competences in the EU

- Design freedom 'new' or 'optimised'
- Life cycle cost
- Life time extension
- Reducing the buy-to-fly ratio
- Utilisation of materials
- Performance of materials
- Reduction of time to design and test and validate an aero engine
- Validation in full scale engine tests
- Increased efficiency of supply chain
- Production efficiency
- Simplified assembly process

In the longer term, AM has real potential also for the space industry. In this sense, The European Space Agency (ESA) began to study the potential applicability of AM technology³⁰. A roadmap, covering around 30 types of AM parts that would strongly benefit from being manufactured using AM and the entire end-to-end AM process, from initial modelling and design of items to material supply and processing and post-processing stages to qualification and standardisation, has been produced by them. Standardisation is a key element is for space. To give mission managers sufficient confidence in 3D-printed parts, methods need to be in place to ensure that these items perform to a benchmarked, repeatable standard.

One key driver for space structures and equipment is the launching loads. Currently all parts being delivered to the International Space Station, or in a longer term, to the Moon or Mars for example, are launched as finished parts, therefore oversized and under the launching loads. Printing them directly at the destination will save a lot of weight and costs because those parts can be optimized to sustain real operating loads..

On the other hand, the spares sector has potential for AM in terms of parts being delivered literally to any place in the world (usually at short notice). AM could drastically become a game changer, by reducing the needs of stocks by printing the parts closer to the demand and enabling shortening of lead times for part availability. Business models to be adopted will be a major decision to be taken in the industry. Safety, traceability and IP rights will also have to be secured. In 2016 a spare process has been agreed with EASA and several parts have been subsequently approved and available in case of customer demand.

Another relevant and specific niche market is represented by the cabin parts. Surface quality and full harmony with the existing non AM parts are extra requirements which current technologies do not fully cover. Therefore very specific post processes are being developed as well in order to ensure that regulations are met (Fumes Smoke and Toxicity (FST) + Heat Release in case of a fire in the cabin) and full customer satisfaction is granted (no visual difference with existing parts).

³⁰ <u>http://www.esa.int/Our Activities/Space Engineering Technology/Advanced Manufacturing;</u> <u>http://www.esa.int/Our Activities/Space Engineering Technology/Ten ways 3D printing could change space</u>

4.2.1. Target Products

In the Aerospace sector there are a number of **key innovative AM products.** As shown in Figure 4.7, nine main product groups where identified. The detailed list of products for each group is reported in Table 4.2

Figure 4.7: Aerospace key product groups

	PRODUCT GROUP	PRODUCTS
	Turbine Parts / Engine	 Turbine Blades, Guide Vanes Nozzles Stator Rings Impellers Non-structural parts
Ť	Small aircraft wings and fuselage and their components	• Design Of Entire Wings
	Cabin & Cockpit parts	 Interior parts Airco Covers Seats Door handles Hinges
	Other complex parts	 Bionic design parts Integration of parts
×	Components of large aircraft wings and fuselage	Air Foils, BracketsLanding gear parts
str.	Spare parts & repair	 Carbon Fibre Printing For Spare And Repair Repair of engine components

	PRODUCT GROUP	PRODUCTS
\otimes	Concept modelling, prototyping and advanced moulds	 Carbon Fibre Mouldings Components with vibration dampening geometries
ļį	Niche, low volume parts	 Circuits For Flight Test Installation Customised Cabin Applications (Seats Etc.)
	Embedded Electronics	 Structural health monitoring Circuits for power supply Embedded sensors (both in the structure and within engines)

4.2.2. Regional Capabilities

Equal to the health sector, the large majority of regions use AM in the aerospace sector. 14 of the regions, among which Catalonia, Emilia-Romagna, Flanders, Auvergne Rhône Alpes, Norte, Thüringen, East Wales, Aragon as well as Basque Country mention this as one of their dominant sectors where AM is already used. Only Tampere, Navarra and Valencia are not including this as a dominant AM sector.

Here below (Figure 4.8) is reported a map showing the national and regional activity (based on number of projects) in the Aerospace sector.

As already anticipated, the Aerospace sector is one of the dominant in the AM industry, and this is also demonstrated by the overall number of listed national and regional projects focusing on the sector (about 19% of the total and second only to Industrial Equipment and Tooling).

The countries with a higher number of related projects are Germany, France and Spain, all focusing mainly on optimisation of processes for the development high performances parts and hybrid manufacturing for large components.

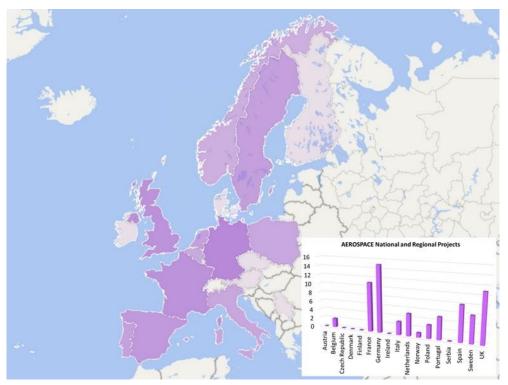


Figure 4.8: AEROSPACE - Map of National and Regional Projects

The complete list of national and regional projects divided by country can be found in ANNEX B.

4.3. Automotive

Automakers have been using AM for almost three decades, and today are progressing to a variety of applications, ranging from design, development, tooling and rapid manufacturing. The industry is the third largest sector for AM as reported by Wohlers³¹ and it is poised to become a \$4.30 Billion global business by 2025³².

Rapid prototyping has historically been the most common use of 3D technology within the automotive sector. The industry has in fact used 3D printers mostly in the pre-production stage, making prototypes/ concept models (an example is shown in Figure 4.9) but also small and complex parts for luxury and antique cars.

³¹ Wohlers, T. &. (2016). *Wohlers Report*. Colorado: Wohlers Associates Inc.

³² Frost & Sullivan's Global 360° Research Team (May 2016), *Global Additive Manufacturing Market, Forecast to 2025,* Frost & Sullivan, Mountain View, California

Figure 4.9: The concept model for a Citroen interior (Courtesy of Materialise)

The sector is much heavily dependent on mass production of parts, which are significantly cheaper using traditional manufacturing methods, therefore a widespread adoption of metal AM has not yet occurred in the industry. Because of this limitation, the most relevant applications for metal 3D printing technologies in the automotive industry are for high-end car manufacturers.

On the other hand, thanks to the significant developments made in AM technology the industry has grown and is now utilising the benefits of AM in new ways. More companies are in fact adopting 3D printing for jigs and fixtures, lowering costs, providing lighter and more ergonomic tools, and more. Furthermore, it has shown a consistent reduction in lead-time by 40% to 90% and cost reduction up to 60%. 3D printing tooling also allows design teams to save time because they can be more responsive with the ability to create one-off custom components.³³

The safety requirements on automotive parts are very high as well as other requirements on strength, lightweight and costs while the series often are very large. It must be taken into account that about 20 years ago, the roof-strength requirement to resist rollover crush was roughly the weight of the vehicle. Today, rollover strength is about four times the gross vehicle weight. AM technology could help in this context thanks to topographical optimization, creating parts with maximum strength using minimum weight and material.

Besides unexpected breakthrough on the technical side, changes in the end product itself (Smart/Green cars) might also affect the type of structural components needed.

There are a number of key drivers for the automotive sector for the adoption and development of AM and hence potential areas of impact. These include:

- (Functional) prototyping
- Light weighting
- Design freedom
- Increased efficiency of supply chain
- Increased quality, reliability and reproducibility

³³ How 3D Printing Is Changing Auto Manufacturing, MachineDesign (Nov14, 2016) <u>http://www.machinedesign.com/3d-printing/how-3d-printing-changing-auto-manufacturing</u>

- Reducing vehicle carbon emissions
- Cost effectiveness

In conclusion, the typical large series envisaged in automotive have a negative impact on the cost effectiveness of 3D-printed components. In assembly tooling and other manufacturing aids however, this is not a problem and the automotive industry is an early adopter of 3D-printing in these application.

4.3.1. Target Products

In the Automotive sector there are a number of **key innovative AM products.** As shown in Figure 4.10, six main product group where identified. The detailed list of products for each group is reported in Table 4.3.

Figure 4.10: Automotive Key Product Groups

Table 4.3: AUTOMOTIVE - Detailed list of key innovative products

	PRODUCT GROUP	PRODUCTS
ð	Engine Components	 Chassis Components Moulding dies repair Gear box parts Rotating/ reciprocating parts (small complex) Conrod CAM Shafts Batteries for E-cars
✻	Auxiliary means of production and supports	 Manufacturing Tools Tools For Testing And Assembly Jigs And Fittings Tooling for precise positioning during assembly
	Embedded electronics	• Sensors
\otimes	Concept modelling, prototyping and design	 Carbon Fibre Mouldings Customised lights - Concepts Lenses and Glass printing
	Niche, low volume parts	 Exclusive And Sports Car Parts Low Volume Interior Parts Customized Parts

	PRODUCT GROUP	PRODUCTS
**	Spare parts & repair	 New parts to upgrade Assembly of new sensors New liquid parts/airducts (plasma)

4.3.2. Regional Capabilities

The automotive industry appears as the sector where most of the regions (including Castilla y León, Normandy, Auvergne Rhône Alpes, Noord-Brabant, Thüringen, Västra Götaland, East Wales, as well as Asturias, Navarra, and Valencia) apply AM to one extent or another. The only two regions not categorising the automotive as a dominant AMs sector are Tampere and Occitane.

In the Vanguard Initiative³⁴, the 3DP demo case on "3D-Printed Hybrid Components" focuses on automotive as the main target market (another secondary market is aerospace). The Lead Partner of such demo case is Università di Bologna, UNIBO (Emilia Romagna [IT]). Participating/co-leading regions are: Aragona [ES], Norte [PT], Baden Wurttenberg [DE], Saxony [DE], Lombardy [IT], Rhone-Alpes [FR] and Region Orebro Lan [SW].

Moreover, the 3DP Vanguard demo case "3D-Printed automotive components" focuses on the development of AM large and complex components, targeting specifically the automotive sector, but with applications also in aeronautics, shipbuilding and railway construction sectors. The leader partner is AITIIP (Aragon [ES]. Participating/co-leading regions are: Emilia Romagna [IT], Norte [PT], Baden-Wurttemberg [DE], Lombardy [IT], Thuringia [DE], Northrine Westphalia [DE], Asturias [ES], Madrid [ES], Cambridgeshire [UK], Piedmont [IT], Bucharest-Ilfov [RO], Kanton Aargau [CH], Warwickshire [UK], Brussels Capital [BE], Berkshire [UK], País Vasco [ES], Gloucestershire [UK], Attica [GR], Luxembourg [L] and Alpnach [CH].

Here below (Figure 4.11) is reported a map showing the national and regional activity (based on number of projects) in the Automotive sector.

Germany, Portugal and UK are the countries with higher number of projects related to the automotive sector. As for the aerospace sector Germany and UK projects' focus mainly optimisation of processes for the development high performances parts, while projects' from Portugal deal with rapid prototyping in general.

³⁴ <u>https://s3vanguardinitiative.eu/cooperations/high-performance-production-through-3d-printing;</u> <u>https://www.s3vanguardinitiative.eu/sites/default/files/docs/general/vanguard_initiative_flyer_3dp_0_002_0.pdf</u>

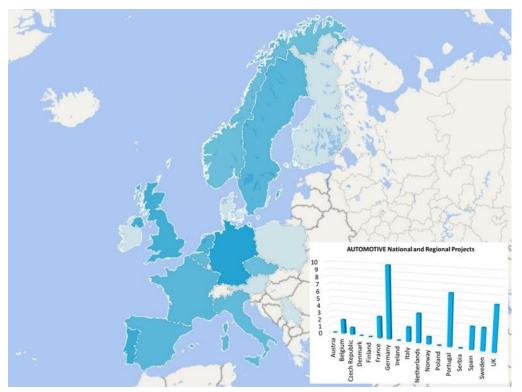


Figure 4.11: AUTOMOTIVE - Map of National and Regional Projects

The complete list of national and regional projects divided by country can be found in ANNEX B.

4.4. Consumer Goods and Electronics

Consumer goods and electronics is the fourth largest sectors using AM. Revenue from 3D-printed electronics and consumer products accounted for 13% of the AM industry, with a share of \$681 million, in 2015³⁵.

In this sector, 3D printing is being explored to design, develop, prototype and manufacture a variety of consumer products, spanning from clothes, jewellery and other fashion products, digital accessories, to home gadgets and decoration.

Although making prototypes remains the main use of additive fabrication, the technology has increasingly spread into 'rapid manufacturing'. 3DP is capable of creating intricate design or geometric free structure, enabling artists, designers, jewellers and fashion designers to make one off bespoke pieces³⁶(Figure 4.12). In addition, AM opens a door to offer mass customization at lower cost. Moreover, additive manufacturing enables companies to build nonstandard electronics, complex assemblies, and intricate or curvilinear shapes. In this way, AM designers are free to design innovative electronic objects that could not have been produced through conventional means, and they can optimize product designs for functionality with fewer manufacturing constraints.³⁷

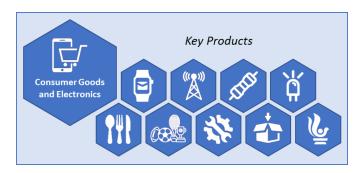
³⁵ Wohlers, T. &. (2016). Wohlers Report. Colorado: Wohlers Associates Inc

 ³⁶ Scudamore, R. J. (2015). POSITIONING PAPER: The Case for Additive Manufacturing. UK: AM Strategy Development Group. Sheffield
 ³⁷ M. Mahto, B. Sniderman, 3D opportunity for electroni. Deloitte Insights <u>https://www2.deloitte.com/insights/us/en/focus/3d-opportunity/additive-manufacturing-3d-printed-electronics.html#endnote-sup-11</u>

Figure 4.12: Stool named OneShot by the designer Patrick Jouin for MGX by Materialise.

A new market that is currently adopting AM and the possibility for mass customisation is in eyewear. Spectacles have an enormous impact on the look of the person wearing them. Not surprisingly, the fashion industry plays an important role within this market. It was only a matter of time for AM to break into this market. Furthermore, the adoption of CAD software among designers is opening the way to AM for manufacturing in the jewellery sector. Annual revenues from 3D-printed hardware, materials, services and software used in the jewellery industry is expected to reach \$900 Million in 2026³⁸.

There are a number of key drivers for the consumer goods/electronic sector for the adoption and development of AM and hence potential areas of impact:


- Tailored products
- Customisation
- Increased efficiency of supply chain
- Increased functionality
- Enhanced materials
- Sustainability of raw materials
- Higher demand for colourful items
- Demand for innovative products

4.4.1. Target Products

³⁸ SmarTech Publishing, "3D Printing Opportunities in the Jewelry Industry – 2017: An Opportunity Analysis and Ten-Year Forecast" https://www.smartechpublishing.com/reports/3dp-jewelry-industry/

In the Consumer and Electronics sector there are a number of **key innovative AM products.** As shown in Figure 4.13, nine main product group where identified. The detailed list of products for each group is reported in Table 4.4

Figure 4.13: Consumer Goods and Electronics Key Product Groups **Table 4.4:** CONSUMER GOODS AND ELECTRONICS - Detailed list of key innovative products

	PRODUCT GROUP	PRODUCTS
	Wearables	 Glasses / Eyewear (Fashion) Clothing Sports Products Shoes Jewellery Accessories Protective masks (sport/professional)
111	Household utensils	 Light Fixtures Vases Furniture Cutlery
	Sensors and Antennas	 Sensors integrated in 3D printed parts Exo selections
	Entertainment	 Toys Musical instruments Consoles accessories
STATE	Basic electronic components	 Resistors Capacitors Inductors Diodes Circuits
**	Spare Parts & Repair	 Plastic covers Repair parts Objects/parts no longer fabricated Conformal cooling inserts Multimaterial inserts (eg, Fe-Cu) Aluminium inserts for small batches

	PRODUCT GROUP	PRODUCTS
Ì	Other Electronics	 Cooling of Electronic and LED lamps Audio components
	Packaging	 Smart packaging for consumer goods/electronic parts, On-demand and customised packaging
L	Art	Complex Sculptures

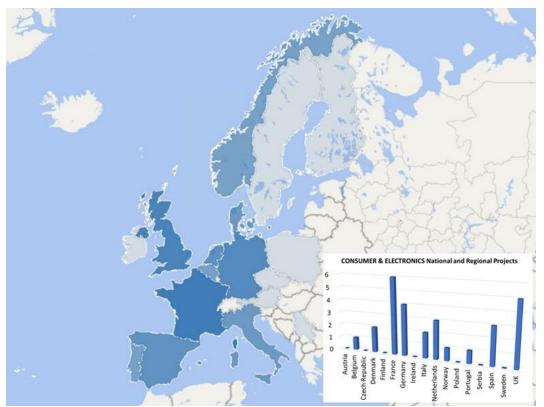
4.4.2. Regional Capabilities

In terms of AM used in the crafting consumer goods, a large number of the regions are active in this field, including Castilla y León, Catalonia, Rhone-Alpes, East Wales, Normandy, Tampere, Navarra, Thüringen, Basque Country, Valencia, Norte and Asturias.

Especially the value chain surrounding consumer goods, a number of regions have had the need to indicate further activity in this sector and hence, a few regions have indicated that they also see the sector of creative goods as a dominant sector where the application of AM plays a central role. Three regions operate in the consumer goods sector, with Asturias and Tampere specifying AM related engagement in the creative goods sector and Normandy working on luxury-related industries. While not identifying themselves with consumer goods, the regions of Flanders and Noord-Brabant are also active users of AM in the creative sector.

In the Vanguard Initiative³⁹, the 3DP demo case on *"Creative industries - Mass-customized consumer products"* is at its infancy and aims at working on cross-regional cooperation in the areas of furniture/toys, footwear, wearables, etc. The lead region is Norte [PT] with co-leading regions such as Lombardy [IT] and Catalonia [ES].

Moreover, the recently identified Vanguard demo case "3DP in Textile" is planned to be focused on Fused deposition modelling (FDM) on Fabrics. The lead region is Lombardy [IT] with co-leading regions such as Flanders [BE] and Nord-Pas-de-Calais [FR].


The only three regions not categorising the consumer goods as a dominant AMs sector are Emilia Romagna, Västra Götaland and Occitane.

Here below is reported a map showing the national and regional activity (based on number of projects) in the Consumer Goods and Electronics sector.

France has the highest number of projects related mostly to 3D printed electronics (e.g. circuit boards and transistors) while in UK, that has the second highest number of projects the focus is more on developing processes and materials for wearables applications (e.g. high performance shoes).

³⁹ <u>https://s3vanguardinitiative.eu/cooperations/high-performance-production-through-3d-printing;</u> <u>https://www.s3vanguardinitiative.eu/sites/default/files/docs/general/vanguard_initiative_flyer_3dp_0_002_0.pdf</u>

Figure 4.14: *CONSUMER GOODS AND ELECTRONICS - Map of National and Regional Projects* The complete list of national and regional projects divided by country can be found in ANNEX B.

4.5. Industrial Equipment and Tooling

This sector includes industrial and business machines as well as all kinds of tooling. According to the Wohlers report it's the largest AM sector accounting for nearly 20% of AM related revenue.

AM industrial equipment is a significant sector and a growing one for the European market. In March 2016, as many as 28 companies in Europe were manufacturing and selling AM equipment. Eight of these are metal powder bed fusion system manufacturers. Wohlers reports industrial machines as those selling for more than \$5,000 which aims to provide the distinction between 'industrial' and 'desktop'. Within Europe these equipment manufacturers include ARCAM, Sweden (acquired by GE); Concept Laser, Germany (75% acquired by GE); DWS, Italy; Envisiontec GmbH, Germany; EOS, Germany; Lithoz, Austria; Mcor, Ireland; Prodways, France; Realizer, Germany (acquired by DMG MORI); Renishaw, UK; Sisma, Italy; SLM Solutions, Germany; Trumpf, Germany and Voxeljet, Germany⁴⁰. Many of these companies are also developing new AM systems to bring to the market. A total of 12,558 industrial systems unit sales were estimated worldwide during 2015. In 2015, Europe position in system unit sales grew to 31.7% in 2015.

AM can be used to produce tooling, moulds, fixtures and patterns with enhanced functionality. Moreover, temperature regulation is a key issue for industrial equipment in the process industry and injection moulding. Because AM enables the ability to produce parts with complex internal structures improve heat transfer can be applied. For example, conformal cooling channels inside moulds can reduce

⁴⁰ Wohlers, T. &. (2016). *Wohlers Report.* Colorado: Wohlers Associates Inc.

cycle times up to 40% when using AM. This is particularly important when equipment needs to operate at very high temperatures (e.g. burners) and internal cooling channels are able to cool the parts improving the life span of the parts and the mechanical properties of the part when operating at these high temperatures. Product examples are special heat exchangers and manifolds for the process industry, robot grippers and test rigs. An example of a special 'heat exchanger' (cooling plate) is given below in Figure 4.15: *Cooling plate-Thermal stabilised table by means of free form cooling structure (source TNO)*. The cooling plate is equipped with a grid of thermal pixels each having individual supply of cooling liquid that can keep the temperature gradient of the plate within very narrow limits.

Figure 4.15: Cooling plate-Thermal stabilised table by means of free form cooling structure (source TNO)

As a secondary service market, tooling produced using AM grew from 13.1% to \$1.859 billion in 2015⁴¹. As a horizontal industry, tooling is a major industrial sector producing endless products to be assembled using various jigs, fixtures and moulds. To produce these parts conventional CNC machining is widely used, however these techniques can be expensive with long lead times. This is where more manufacturers are now looking to AM for a more cost effective method particularly for producing low volume or one off complex parts. Equally, this opens the opportunity for improving tooling design which in turn offer improved functionality of the products produced.

4.5.1. Target Products

In the Industrial Equipment and Tooling sector there are a number of **key innovative AM products including** industrial equipment itself. As shown in Figure 4.16, nine main product groups where identified. The detailed list of products for each group is reported in Table 4.5

⁴¹ Wohlers Report 2016: 3D Printing and AM state of the industry. Annual worldwide progress report.

Figure 4.16: Industrial Equipment and Tooling Key Product Groups

 Table 4.5: IND. EQUIPMENT AND TOOLING - Detailed list of key innovative products

	PRODUCT GROUP	PRODUCTS
	Mould Inserts	 Hot Summers Large Molds (>Ø250mm) Copper/Steel Parts Re-Configured Moulds Insert With Enhanced Materials Conformal Cooling Inserts Multimaterial Inserts (Eg, Fe-Cu) Aluminium Inserts For Small Batches
	Subsea/Deep Sea Industrial Equipment	 Motor & generator parts; High pressured pumps; Drilling, cutting, moving, transporting equipment Welding robots
J	Scientific & Measurement Instruments	 Gauges, Fixing devices for temperature measurement, chemical analysis etc, with special features, eg, cooling. Microscopes accessories Thermometers
✻	Tooling and guides	 Assembly Jigs Drills And Cutting Guides Other Templates Indexable Inserts (Cutting Tools) Pressing Dies & Punches Fixtures
	Integrated Electronics	• Sensors integrated in 3D printed parts
**	Industrial AM Equipment	 Hybrid AM machines Grippers mixers (mixing chemicals) High deposition rate systems for 2x2x2meter components.
\bigcirc	Industrial AM Software	 Solutions to enable sintering processes also for prototyping Topology optimisation with capability to create shell structures/sandwich structures

	PRODUCT GROUP	PRODUCTS
		 Solutions for designing customised parts; for hybrid manufacturing, graded materials; designed engineering metals (ultra high cooling rates) 3D Printing of smart materials
**	Spare Parts & Repair	• Parts to replace broken parts in existing industrial equipment. Audio components
×,	High Performance Tool Materials	 AM Hard Materials for Tooling (powders & granules): Hardmetals/cemented carbides; tool steels/metal matrix composites; engineering ceramics; enabling technologies Materials specialised in high wear

4.5.2. Regional Capabilities

AM is also used extensively in the crafting of industrial equipment and tools, and is subsequently a dominant sector for 13 of the regions, including for Asturias, Castilla y León, Catalonia, Emilia-Romagna, Flanders, Occitanie, Basque Country, Rhone-Alpes, Noord-Brabant, Tampere, Thüringen, Basque Country and Norte.

In Noord-Brabant the sector is supported by the availability of industrial machine builders, while in Emilia-Romagna all relevant companies are equipped with AM machinery for prototyping, which has led to the region placing a growing focus on applying AM in the tooling and spare part business. In Rhone-Alpes 40 of the key actors identified specified that they work with AM within the industrial equipment and tooling sector. Furthermore, eight of the actors are focused only on industrial equipment and tooling.

In the Vanguard Initiative⁴², the 3DP demo case *"Machinery, Tooling and Complex Shapes"* is a European network of experience, competences and resources covering all aspects of AM, from redesign to pre-production, supporting with tangible facts the technical and economical validation on real life applications. The platform is focused on mature AM technologies implementation. The lead region is Wallonia [BE], with participant regions such as Lombardy [IT], Aragon and Catalonia [ES], Norte [PT], Tampere [FI], Rhone-Alpes [FR], Trentino [IT]; South Netherlands [NL].

Another Vanguard 3DP demo case relevant for the analysed sector is the one entitled "Additive-Subtractive platform", which aims at integrating additive & subtractive technology production flows to enable a quick, professional analysis of several production process set-ups by the participating companies. The objective is to develop a digitally connected network of pilot lines / production hubs able to produce in a cost effective way one piece or small product series with an extreme high precision, high finish and added value, combining additive and subtractive technologies. The lead region South-Netherlands [NL], with participant regions such as Baden-Württemberg [DE], Emilia-Romagna [IT], Flanders [BE], Lombardy [IT], Trentino [IT] and Saxony [DE].

Here below (Figure 4.17) is reported a map showing the national and regional activity (based on number of projects) in the Industrial Equipment and Tooling sector.

⁴² <u>https://s3vanguardinitiative.eu/cooperations/high-performance-production-through-3d-printing;</u> <u>https://www.s3vanguardinitiative.eu/sites/default/files/docs/general/vanguard_initiative_flyer_3dp_0_002_0.pdf</u>

The sector has the overall highest number of projects in the list, accounting for the 25% of the total, reflecting the fact that the industry is the largest AM sector.

Portugal, UK, Germany and France are the countries with higher number of projects related to the industrial equipment and tooling sector. In particular, most of the projects from Portugal focus on moulds and hybrid technologies, while in UK projects are more concentrated on solutions (both from the point of view of HW and SW) for improving the surface finishing of AM components. Hybrid technologies are also the focus of different project from Germany, together with the development of wire-based technologies for 3D printing of metal. In France a number of projects focus on development of software solutions and moulds.

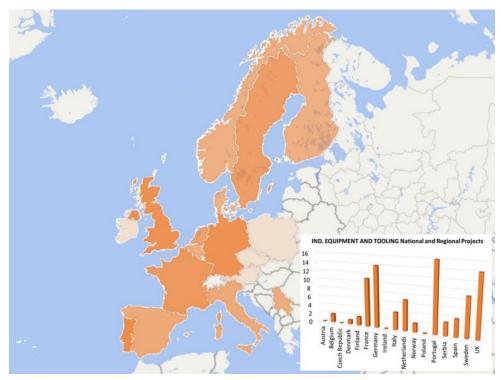


Figure 4.17: IND. EQUIPMENT AND TOOLING - Map of National and Regional Projects

The complete list of national and regional projects divided by country can be found in ANNEX B.

4.6. Construction

Additive manufacturing is gaining ground in the construction industry, manly owing to the potential to improve on current construction methods. The construction industry has been recognized as one industry that consumes considerable amount of resources and poses significant environmental stresses. Over the past few decades, studies on construction innovations have been conducted to address the productivity, environmental, and other issues in terms of two forms. One form of construction innovations is a response to external needs (e.g. the clients' needs) and the other form of construction

innovations originates from other industries. However, the main emphasis for innovation strategy in the construction industry is to use technology from elsewhere to reinforce other competitive advantages⁴³.

Freedom of forms, unconventional buildings, curves, innovative designs and personalized creations are some of the features that AM can bring to this sector. In construction virtually every wall, floor, panel, partition, structure and facade is unique in dimension, which means either standard sized materials are cut down to fit, or bespoke moulds are created to form each component. In the latter case economies of scale drive the need to design multiple copies of identical elements on a project. There is a clear cost-based opportunity to save time and materials by reducing waste and the need for formwork/mould making. There is also significant potential to reduce the quantity of materials used through optimisation of form and the implementation of additional 'engineering function' within components. The computational design environment promises the freedom to design around individuals and the environment. Furthermore, AM may remove the need for replication of components, giving designers freedom to make each part unique⁴⁴.

A complicating factor for application of 3D-printing in the construction area is that the requirements in this sector are tough with respect to e.g. durability (typical required life span 50 years), safety and strength (compressive stress) while some parts of the building are exposed to outside weather conditions and heavy loads. Another issue is the sizes of buildings. These are often in the range of tenths of meters which is enormous compared with the building area of most traditional 3D-printers that have working areas in the range of e.g. 300 mm. This means that the volume of workpiece material used in buildings can be in the order of 1 million higher compared to 'traditional' parts produced by AM. Developments concerning these issues are already taken place.

Experimental applications of AM in the construction industry started appearing in the late 1990's⁴⁵. These initial proof-of- concept applications helped identify potential benefits and challenges for AM technologies in construction. Currently there are three large-scale AM processes targeted at construction and architecture in the public domain, namely: Contour Crafting⁴⁶, D-Shape⁴⁷ and Concrete Printing⁴⁸. All three have proven the successful manufacture of components of significant size and are suitable for construction and/or architectural applications.

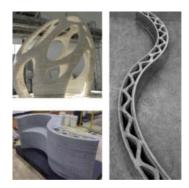
The integration of AM technologies in the construction sector has the main advantages:

- Manufacturing of new structures, complex shapes, integrated channels with flexibility and adaptability:
- To build more accurately and with a better final appearance
- Pollution reduction and consumption of natural goods.
- Decreasing energy consumption and waste products obtained while manufacturing.
- Decreasing of the manufacturing and production time, with a manufacturing processes automation, obtaining by this way functional structures faster with a lower cost.

⁴³ Wu, P., Wang, J. & Wang, X. Automation in Construction, *A critical review of the use of 3-D printing in the construction industry*, Autom. Constr. (2016)

⁴⁴ Lim, S. et al. Developments in construction-scale additive manufacturing processes. Autom. Constr. 21, 262–268 (2012).

⁴⁵ Pegna, J. Exploratory investigation of solid freeform construction., 427–437 (1997).


⁴⁶ B. Khoshnevis, D. Hwang, K. Yao, Z. Yeh, Mega-scale fabrication by contour crafting, International journal of Industrial and System Engineering Vol 1 (no. 3) (2006) 301–320

⁴⁷ D-Shape Technology. Available at: http://d-shape.com/what-is-it/.

⁴⁸ Freek Bos, Rob Wolfs, Zeeshan Ahmed & Theo Salet (2016) Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing, Virtual and Physical Prototyping, 11:3, 209-225. <u>https://doi.org/10.1080/17452759.2016.1209867</u>

- Decreasing of labourer's accident hazards due the increase of automation.
- Total process control while manufacturing layer by layer any structure. Can be checked at every second all variables of the constructive process.

Figure 4.18: Examples of full scale builds from each process: D-Shape, top left; Contour Crafting, right; Concrete Printing, bottom left

4.6.1. Target Products

In the Construction sector there are a number of **key innovative AM products.** As shown in Figure 4.19, five main product groups where identified. The detailed list of products for each group is reported in Table 4.6

Figure 4.19: Construction Key Product Groups

	PRODUCT GROUP	PRODUCTS
Î	Unconventional buildings (prototypes, decorative façades, art, design, heritage reconstruction)	 Mock ups and 1:1 proto types Sewage water treatment component Ergonomics and customizations in unconventional buildings Restauration, local substitute elements combine with scanning Restauration historical building details Integrated facades / insulation

	PRODUCT GROUP	PRODUCTS
	Structural parts like bridges, floors, walls	 Precise precast with no moulds Nodes (steel) for steel frame works build on site Bespoke plastic fittings Reinforced "concrete" structures (potentially build on site) Structural component for freeform building Reinforced / locally reinforced structures Complex joints (hinges) Combined load bearing, piping, acoustics, insulation, aesthetics and other function integration
÷	Low risk parts with complex shapes e.g. for garden and landscape decoration	 Low risk parts for e.g. garden decoration, landscape, art Special elements to close gaps
	Special buildings (army, nuclear disaster, army buildings, lunar base)	 Temporary emergency building (after disaster) Quick solutions in case of emergencies (cracks / broken pipes / etc.) Customized components optimised for temporary needs
	Organic shaped complex (structural) parts with integrated functions	 Light weighting topological optimised organically esthetical shaped structural free form elements Topologically optimized structures Indoor partitions (walls, flexible rooms, indoor enclosures, etc.) with integrated functionalities for temporary functions Panels with integrated functions (thermal insulation, acoustic insulation, lighting, daylight, etc.) Kinematic structures out of flexible and stiff materials Special solar elements

4.6.2. Regional Capabilities

In the process of emerging, the market of 3D-Printed houses and buildings is facing key technical challenges. AM appears, in fact, to play a less dominant role in the construction sector. As a result, less than half of the regions work actively with AM technology in their construction sector, including Asturias, Castilla y León, Catalonia, Occitanie, Thüringen, Basque Country and Norte.

Here below (Figure 4.20) is reported a map showing the national and regional activity (based on number of projects) in the Construction sector.

As demonstrated by the chart, the sector has the lowest number of listed projects. Furthermore, the focus of the projects is more general and tackle overall processes and new materials development (wood, concrete, composites, etc...).

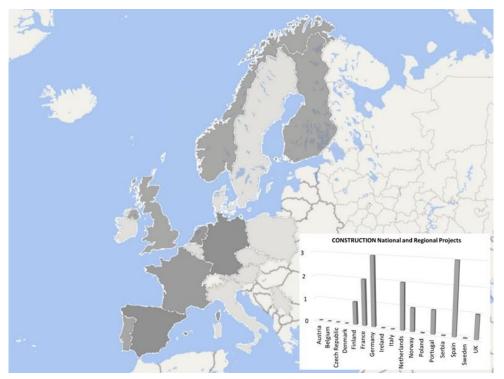


Figure 4.20: CONSTRUCTION - Map of National and Regional Projects

The complete list of national and regional projects divided by country can be found in ANNEX B.

4.7. Energy

Energy consumption is still growing worldwide and projected to increase further. Two thirds of the worldwide energy development was generated by fossil sources in 2010. The global turbine market was valued at USD 135.68 billion in 2013 and is expected to reach USD 191.87 billion by 2020 at a CAGR of 4.89% from 2014 to 2020⁴⁹. The Energy branch is focused on production of energy and its transport and distribution. The topic of energy storage is also being covered and seems to be substantial for further development of the renewable energy system.

There are a number of key drivers for the energy sector for the adoption and development of AM and hence potential areas of impact. These include:

- Energy usage (improved fuel efficiency)
- Reductions of emissions
- Complex parts
- Life cycle cost
- High performance materials
- New opportunities for product development process e.g. validation in full scale tur-bine tests
- Improvement of MRO (Maintenance, Repair and Overhaul)
- Production costs

⁴⁹ <u>http://www.transparencymarketresearch.com/turbines-market.html</u>

• AM process efficiency

Reliable, efficient and clean fossil power systems needs innovative technologies. By using innovative fossil power systems, scarce resources can be exploited with maximum efficiency and fossil power generation as environmentally friendly as possible. The development of AM processes in recent years offers the opportunity to produce complex parts by AM with a high accuracy and improved material properties for the use in power turbines⁵⁰.

With the AM technology the repair and production of parts for industrial gas turbines can be faster and with full freedom of design possibilities. Within the last years, AM has emerged and is revolutionizing the manufacturing of components. This technology allows design improvement and rapid manufacturing of components, thus enabling quick upgrading of existing assets to the latest part design.

There is great potential for AM to create value by reducing greenhouse gas emissions, use less resources in the production process, reducing the development time, offering flexibility for design of parts, faster repairs, reduction of lead time and using new fuel mixes. Recently, a key development was achieved with the production of additively manufactured turbine blades with a conventional design at full engine conditions⁵¹, standing extreme temperatures.

Figure 4.21: A new SLM manufactured burner front consists of one component and two welds. (Source: Siemens; «Gas Tur-bine World) and 3D printed Swirler (Source: Siemens)

While the nuclear sector is also developing Additive Manufacturing knowledge and applications⁵², it is believed that the Oil and Gas Industry will be the next big adopter of AM technologies to become more efficient in the current low oil price era. Companies are actively exploring the use cases for both rapid prototyping as well as field production of parts The possibility of printing metal components and increasing opportunities for large print volumes is one of the key drivers⁵³.

The freedom to design specific types of valves in shapes was never possible with traditional molding techniques. For instance, intricate shapes, hollow structures, and woven meshes are able to be realized in designs. Additionally manufacturing time can be aved.

AM technologies are also gaining interest in the renewable energy sector and in particular in wind energy. Major players in the wind industry are currently investigating how AM can contribute to the

⁵⁰ http://www.energy.siemens.com/us/en/fossil-power-generation/

⁵¹ https://3dprint.com/164121/siemens-gas-turbine-blades/

⁵² https://energy.gov/sites/prod/files/2016/05/f31/2016%20ADVANCED%20METHODS%20FOR%20MANUFACTURING.pdf

⁵³ https://www.smartechpublishing.com/reports/additive-manufacturing-opportunities-in-oil-gas-markets-2016-a-ten-year-for

development and manufacturing of wind turbine components. ⁵⁴. Similarly, the relatively new sector of ocean energy could benefit in the future of progress in AM technologies.

Lux Research developed a methodology to score use cases for this industry based on the value generated by printing them and their suitability for being printed. The analysis identified use cases such as pipeline pigs and sand control screens as forthcoming and liner hanger spikes and drill bits as high-potential applications. Profitable use cases included 3D printing chemical injection stick tools and nozzles for downhole cleanout tools⁵⁵.

4.7.1. Target Products

In the Energy sector there are a number of **key innovative AM products.** As shown in Figure 4.22, eight main product groups where identified. The detailed list of products for each group is reported in Table 4.7

Figure 4.22: Energy Key Product Groups

PRODUCT GROUP	PRODUCTS
Turbines parts	 Static Vanes Turbine Blades (rotating) Nozzles Burners Swirls
Oil and gas industry products	 Chemical Injection Stick Tools Nozzles For Downhole Cleanout Tools Valves Connectors Interface parts (T-connections) Push button Propellers, Impellers and pumps components Filters Heat Exchangers Flow control parts (including Subsea Xmas tree, valves, seals) Subsea processing equipment

⁵⁴ http://www.windpowermonthly.com/article/1421837/additive-manufacturing-will-gamechanger#box

⁵⁵ http://www.luxresearchinc.com/content/assessing-opportunity-additive-manufacturing-oil-and-gas-industry

	PRODUCT GROUP	PRODUCTS
<u>- 444</u>	Renewable Energy industry components	 Solar Cells (including films and flexible PV) Solar thermal Plant towers (including Mirrors Frames) Windmill towers Wind Turbine Blades
4	Energy storage	 Batteries (including microbatteries) Fuel cells Geothermal piping
	Electromechanical and 3D electronic components	 Sensor system for temp; Visual analysing; Smart Control Devices
	Floating Platforms components	 Anchors Connections Mooring Floats
\gg	Concept modelling, prototyping and design	Heat exchanger injection function integration
**	Spare parts & repair	 Repair of complex or obsolete parts Burner repair Swirler repair Turbine blades, vanes Processing equipment Fin seals

4.7.2. Regional Capabilities

European capabilities in the area of Additive Manufacturing for Energy are currently scattered, and as for the construction sector, only a few of the regions categorise the energy sector as dominant for AM application. Almost the same list of regions indicate that they apply AM in the energy sector, including Asturias, Castilla y León, Catalonia, Occitanie, Thüringen, Basque Country and finally, joined by Rhone-Alpes.

Here below (Figure 4.23) is reported a map showing the national and regional activity (based on number of projects) in the Energy sector, where Germany is the most active country in terms of projects related to the Energy Sector.

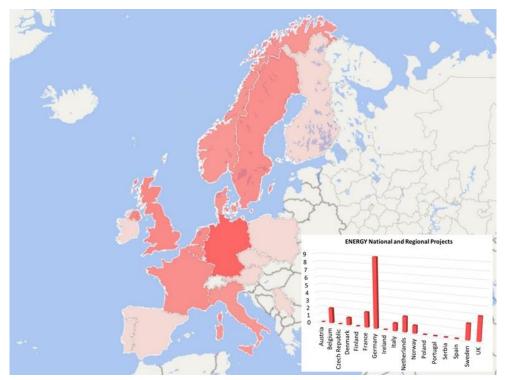


Figure 4.23: ENERGY - Map of National and Regional Projects

The complete list of national and regional projects divided by country can be found in ANNEX B.

5. AM-MOTION identified actions

The present chapter provides AM-MOTION roadmaps on identified actions to foster AM development and market uptake. Such actions are divided into cross-cutting technological and non technological ones, and actions segmented by sector.

For each identified actions, the relevance for the <u>different steps of the value chain</u> have been emphasised in the roadmaps. The actions are segmented into short-term actions (suggested actions to be started in 2019-2021), medium term actions (2022-2024), long-term actions (2025-2028), in order to deliver by 2030 the foreseen vision.

For sectorial roadmaps, each action is linked also to specific target product groups, described in Chapter **Error! Reference source not found.** Moreover, the type of foreseen activity has been highlighted, n line with H2020 topics: research and innovation actions (RIA) are actions where the core of activities is in fact research and development with target TRL in general up to 5; innovation actions (IA) are suggested topics which are more focused on validation and demonstration activities, with target TRL up to 6-7. Coordination and support actions (CSA) are suggested topics result in enhanced coordination of research initiatives and findings rather than in research outputs.

Details of each action in terms of identified gap with the description of the current context, description of proposed activities, initial and target TRL, foreseen impact in terms of key performance indicators are reported in <u>annex D</u>.

5.1. CROSS-CUTTING TECHNOLOGICAL actions

A number of technical actions to solve cross-sectorial challenges were identified as reported in the roadmaps shown in Figure 5.1 and in Figure 5.2, focusing on short term and on medium to long term, respectively. Such actions <u>include also standardisation and certification-related topics</u>.

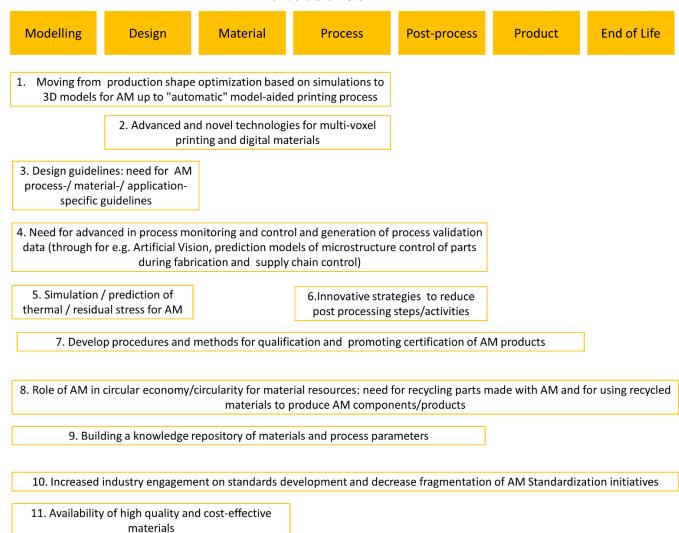


Figure 5.1 AM-MOTION Roadmap on cross-cutting technical actions (short-term focus)

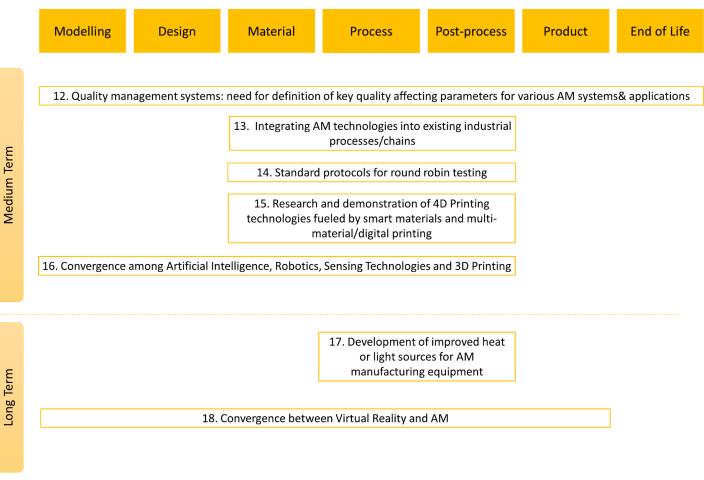


Figure 5.2: AM-MOTION Roadmap on cross-cutting technical actions (medium and long-term focus)

5.3. CROSS-CUTTING NON-TECHNOLOGICAL actions

A number of cross-cutting non-technical actions were identified as reported in the roadmap shown in Figure 5.3. Such actions cover different topics such safety, communication, education and training, business models, IPR and financing issues.

	Modelling Design Material Process Post-process Product End of Life
	1. Promoting effective communication of AM technologies for high applications and impact
'n	2. Develop AM specific educational and training modules both through linking with "regular" high education curricula (engineering, business schools) and training on the job approaches
Short term	3. Innovative AM sustainable business models
	 Safety issues on AM (with focus on metal AM): need for safety assessment, safety management and guidelines and education on EHS challenges
	5. Promoting crowdsourcing solutions for design and manufacturing
lerm	6. Development of a European network system for AM education and training
Medium Term	7. Developing and promoting effective intellectual properties strategies in AM and better awareness of IP issues
M	
erm	8. Promoting the creation of a suitable IP framework
Long Term	

Figure 5.3: AM-MOTION Roadmap on cross-cutting non-technical actions

5.4. HEALTH gaps and actions

Health-specific actions were identified as reported in the roadmap shown in Figure 5.4. Key actions details (type of activity, initial and target TRL, related target product groups) are reported in Table 5-1. The roadmap reports only the key target products linked to each specific action, whilst the table list all the relevant target products.

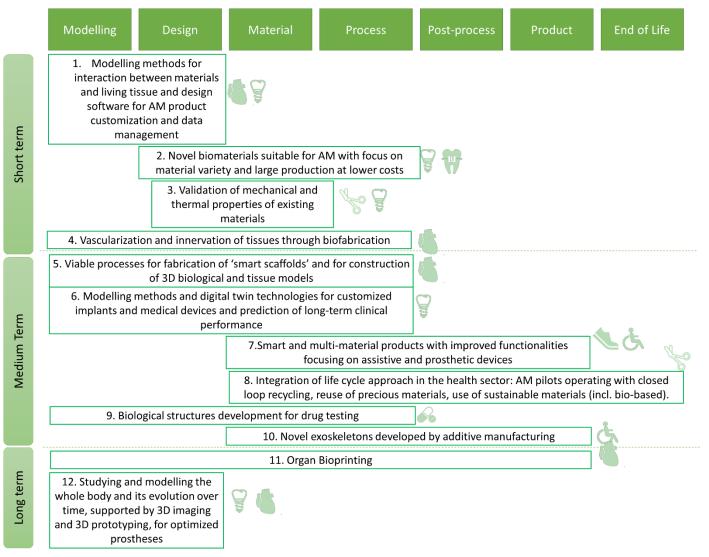


Figure 5.4 AM-MOTION Health Roadmap

Table 5-1 AM-MOTION Health actions details

			TRL		Target Products								
N.	Action name	Type of Activity	Initial TRL	Target TRL	Assistive and prostetic devices	Surgical guides, tools and models	Medical implants	Other dental products	Other customised products	Living tissues and organs	Pharmace utical products	Food	
1	Modelling methods for interaction between materials and living tissue and design software for AM product customization and data management	RIA	3-4	5-6			х			x			
2	Novel biomaterials suitable for AM with focus on material variety and large production at lower costs	IA	4-5	6-7		х	х	х	х	x		x	
3	Validation of mechanical and thermal properties of existing materials	IA	5-6	7-8	х	х	Х	х		х			
4	Vascularization and innervation of tissues through biofabrication	RIA	1-2	3-4						х	х		
5	Viable processes for fabrication of 'smart scaffolds' and for construction of 3D biological and tissue models	IA	2-3	4-5						х	х		
6	Modelling methods and digital twin technologies for customised implants and medical devices and prediction of long-term clinical performance	RIA	3-4	5-6		х	x			x	х		
7	Smart and multi-material products with improved functionalities focusing on assistive and prosthetic devices	RIA	2-3	4-5	х	х	х	х		x			
8	Integration of life cycle approach in the health sector: AM pilots operating with closed loop recycling, reuse of precious materials, use of sustainable materials (including bio-based ones).	RIA	2-3	4-5	x	x	x	x				x	
9	Biological structures development for drug testing	RIA	2-3	4-5						х	х		
10	Novel exoskeletons developed by additive manufacturing	RIA	2-3	4-5	х								
11	Organ Bioprinting	RIA	2-3	4-5						х			
12	Studying and modelling the whole body and its evolution over time, supported by 3D imaging and 3D prototyping, for optimized prostheses	RIA	1-3	2-4			х			x	х		

5.5. AEROSPACE gaps and actions

Aerospace-specific actions were identified as reported in the roadmap shown in Figure 5.4 **AM**-**MOTION Health Roadmap**Figure 5.5 . Key actions details (type of activity, initial and target TRL, related target product groups) are reported in Table 5-2.

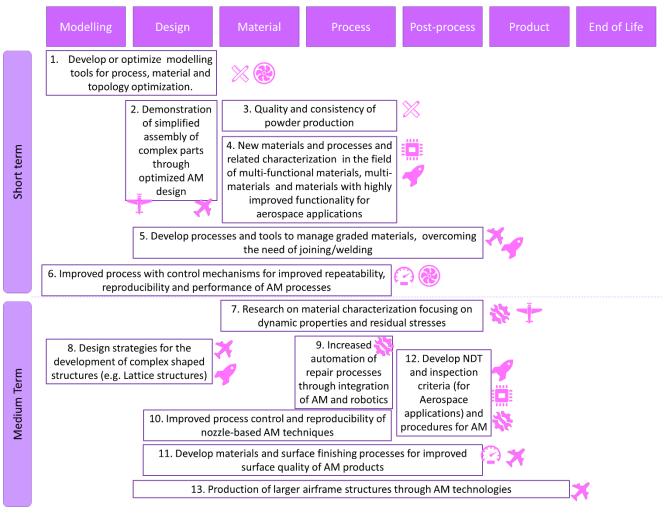
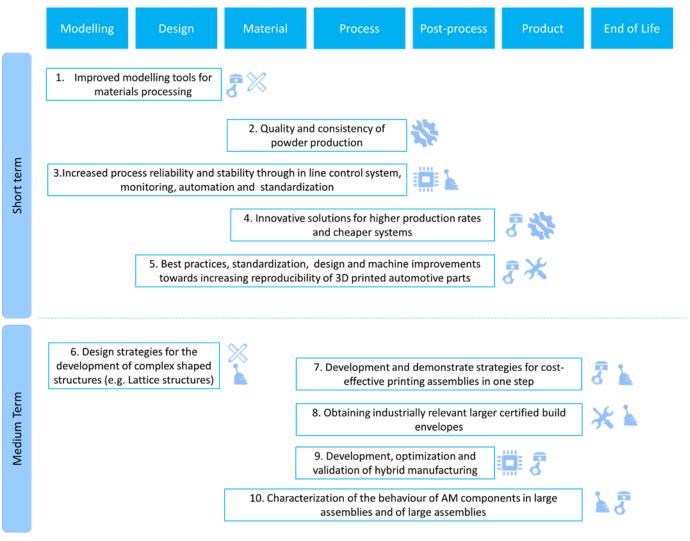
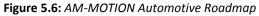


Figure 5.5: AM-MOTION Aerospace Roadmap


Table 5-2: AM-MOTION Aerospace actions details


			TF	RL				Targe	et Produ	cts			
N.	Action Name	Type of Action	Initial TRL	Target TRL	Turbine Parts / Engine	Small aircraft wings and fuselage and their components	Cabin & Cockpit parts	Other complex parts	Components of large aircraft wings and fuselage	Spare parts & repair	Concept modelling, prototyping and advanced moulds	Niche, low volume parts	Embedded electronics
1	Develop or optimize modelling tools for process, material and topology optimization.	RIA/CSA	5-6	7	x	x		x	x	x	x	х	x
2	Demonstration of simplified assembly of complex parts through optimzed AM design	IA	6	7	x			x	х	x	x	х	x
3	Quality and consistency of powder production	IA	6	7	x	x		x	x	x	x	x	x
4	New materials and processes and related characterisation in the field of multi-functional materials, multi-materials and materials with highly improved functionality for aerospace applications	IA	4-6	7	x	x	x	x	x	x		x	x
5	Develop processes and tools to manage graded materials, overcoming the need of joining/welding	RIA	2-3	5	x	x		x	x	x		x	
6	Improved process with control mechanisms for improved repeatability, reproducibility and performance of AM processes	IA	4-6	7	x	x	x	x	x	x	x	х	x
7	Research on material characterization focusing on dynamic properties and residual stresses	RIA	4-5	6	x	x	x	x	х		х		
8	Design strategies for the development of complex shaped structures (e.g. Lattice structures)	IA	5-6	7	x	x		x	x		x		
9	Increased automation of repair processes through integration of AM and robotics	IA	5-6	7				x		x		х	x
10	Improved process control and reproducibility of nozzle-based AM techniques	RIA	4-5	6	x	x	x	x	x	x	x	х	x
11	Develop materials and surface finishing processes for improved surface quality of AM products	IA	6	7	x	x	х	x	х	x		х	
12	Develop NDT and inspection criteria (for Aerospace applications) and procedures for AM	CSA/IA	6	7	x	x	x	x	х	x			x
13	Production of larger airframe structures through AM technologies	RIA	3-4	6					х		х		

5.6. AUTOMOTIVE gaps and actions

Automotive-specific actions were identified as reported in the roadmap shown inFigure 5.6. Key actions details (type of activity, initial and target TRL, related target product groups) are reported in Table 5-3.

Table 5-3: AM-MOTION Automotive actions details

			TI	RL	Target Products							
N.	Action Name	Type of Activity	Initial TRL	Target TRL	Engine Components	Embedded electronics	Auxiliary means of production and supports	Concept modelling, prototyping and design	Spare parts & repair	Niche, low volume parts		
1	Improved modelling tools for materials processing	RIA	4-5	6	Х	Х	x	х	Х	х		
2	Quality and consistency of powder production	IA	5-6	7	Х	x	x	x	X	X		
3	Increased process reliability and stability through in line control system, monitoring, automation and standardization	IA	6	7	x	x	x	x	x	x		
4	Innovative solutions for higher production rates and cheaper systems	IA	4-5	6	x	x	x	x	x	x		
5	Best practices, standardization, design and machine improvements towards increasing reproducibility of 3D printed automotive parts	IA/CSA	6	7	x	x	x	x	x	x		
6	Design strategies for the development of complex shaped structures (e.g. Lattice structures)	IA	5-6	7				x		x		
7	Development and demonstrate strategies for cost-effective printing assemblies in one step	IA	6	7	x	x	x	x	x	x		
8	Obtaining industrially relevant larger certified build envelopes	CSA/IA	5-6		Х	Х	х		X	X		
9	Development, optimization and validation of hybrid manufacturing	RIA	4-5	6	x	x	x	x	x	x		
10	Characterization of the behavior of AM components in large assemblies and of large assemblies	IA	5-6	7	x			x		x		

5.7. CONSUMER and ELECTRONICS gaps and actions

Consumer and electronics-specific actions were identified as reported in the roadmap shown in Figure 5.7 . Key actions details (type of activity, initial and target TRL, related target product groups) are reported in Table 5-4.

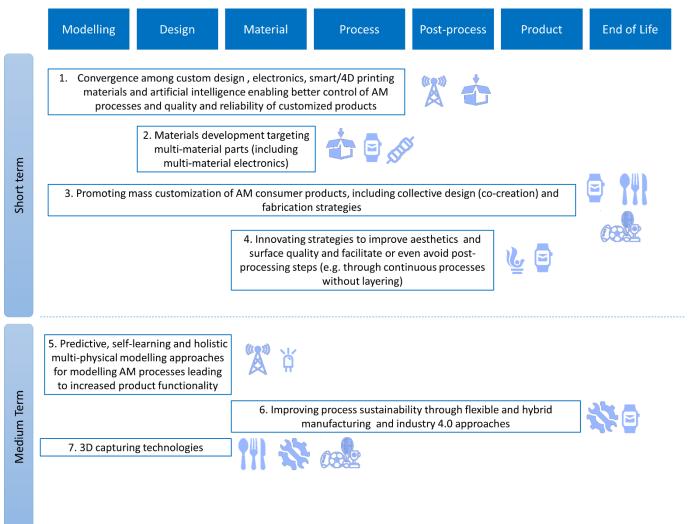


Figure 5.7: AM-MOTION Consumer and Electronics Roadmap

Table 5-4: AM-MOTION Consumer and Electronics actions details

			Т	RL		Target Products							
N.	Action Name	Type of Activity	Initial TRL	Target TRL	Wearebles	Sensors and Antennas	Basig electronic components	Other electronic parts	Household utensils	Entertainment	Spare parts and repair	Packaging	Art
1	Convergence among custom design, electronics, smart/4D printing materials and artificial intelligence enabling better control of AM processes and quality and reliability of customized products	RIA	4-5	6	x	x	x	x	x	x	x	х	x
2	Materials development targeting multi-material parts (including multi-	RIA	4-5	6	x	x	x	x	x	x	х	х	x
3	Promoting mass customization of AM consumer products, including collective design (co-creation) and fabrication strategies	IA/CS A	5-6	7	x		x		x	x	х	х	x
4	Innovating strategies to improve aesthetics and surface quality and facilitate or even avoid post-processing steps (e.g. through continuous processes without layering)	IA	6	7	x	x	x	x	x	x	x	x	x
5	for modelling AM processes leading to increased product functionality	IA	5-6	7	x	x	x	x	x	x	x	x	x
6	Improving process sustainability through flexible and hybrid manufacturing and industry 4.0 approaches	RIA	4-5	6	x	x			x	x	х	х	
7	3D capturing technologies	IA	5-6	7	х	х			х	Х	х	х	х

5.8. INDUSTRIAL EQUIPMENT and TOOLING gaps and actions

Industrial equipment and tooling-specific actions were identified as reported in the roadmap shown inFigure 5.8. Key actions details (type of activity, initial and target TRL, related target product groups) are reported in Table 5-5.

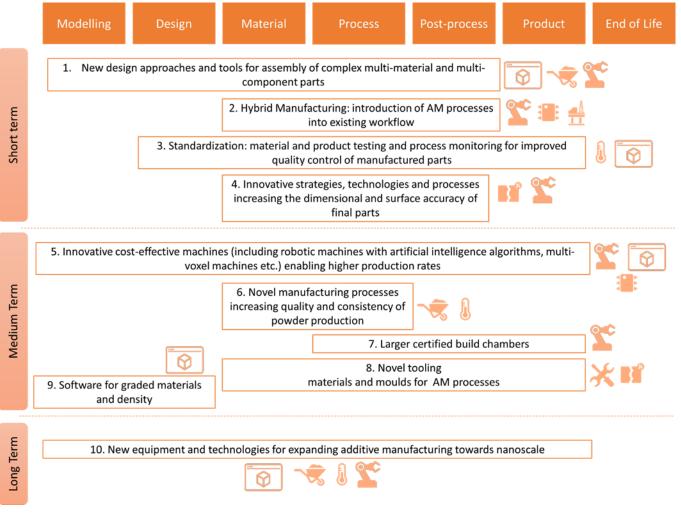


Figure 5.8: AM-MOTION Industrial equipment and tooling Roadmap

Table 5-5: AM-MOTION Industrial equipment and tooling actions details

			TI	RL				Target P	rodu	icts			
N.	Action Name	Type of Activity	Initial TRL	Target TRL	Mold inserts	Subsea/Deep Sea Industrial Equipment	Tooling and guides	Scientific & Measurement Instruments	Integrated Electronics	Spare Parts	Industrial AM equipments	High Performance Tool Materials	Industrial AM Software
1	New design approaches and tools for assembly of complex multi- material and multi-component parts	IA	5-6	7	x		x	x			x	x	х
2	Hybrid Manufacturing: introduction of AM processes into existing workflow	IA	5-6	7			x	x			x		
3	Standardisation: material and product testing and process monitoring for improved quality control of manufactured parts	IA/C SA	6	7				x			х	x	х
4	Innovative strategies, technologies and processes increasing the dimensional and surface accuracy of final parts	IA	5-6	7	x			x			х		
5	Innovative cost-effective machines (including robotic machines with artificial intelligencealgorithms, multi-voxel machines etc.) enabling higher production rates	RIA	4-5	6							x		
6	Novel manufacturing processes increasing quality and consistency of powder production	IA	6	7				x			х	х	
7	Larger certified build chambers	IA	6	7							Х		
8	Novel tooling materials and moulds for AM processes	RIA	4-5	6	x		x					x	
9	Software for graded materials and density	IA	6	7								х	Х
10	New equipment and technologies for expanding additive manufacturing towards nanoscale	RIA	4-5	6							х		

5.9. CONSTRUCTION gaps and actions

Construction-specific actions were identified as reported in the roadmap shown inFigure 5.9. Key actions details (type of activity, initial and target TRL, related target product groups) are reported in Table 5-6.

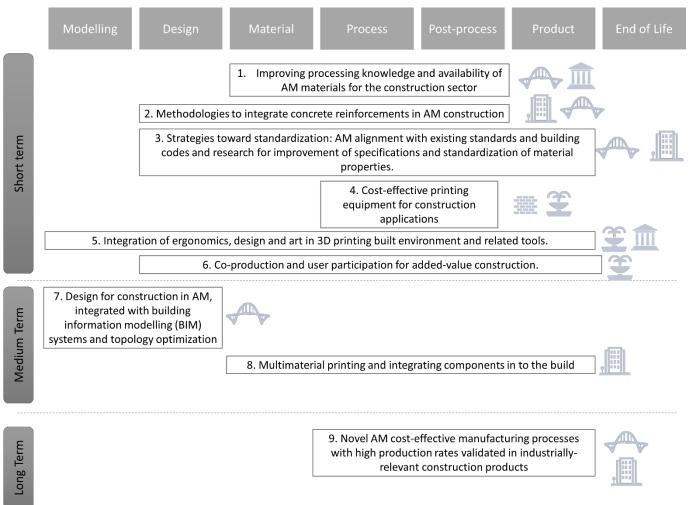


Figure 5.9: AM-MOTION Construction Roadmap

Table 5-6: AM-MOTION Construction actions details

			Т	RL		Targe	et Products		
N.	Action Name	Type of Activity	Initial TRL	Target TRL	Low risk parts with complex shapes e.g. for garden and landscape decoration	Unconventional buildings (prototypes, decorative façades, art, design, heritage reconstruction)	Special buildings (army, nuclear disaster, army buildings, lunar base)	Structural parts like bridges, floors, walls	Organic shaped complex (structural) parts with integrated functions
1	Improving processing knowledge and availability of AM materials for the construction sector	RIA	4-5	6	x	x	x	x	x
2	Methodologies to integrate concrete reinforcements in AM construction	RIA	4-5	6		x	x	x	x
3	Strategies toward standardisation: AM alignment with existing standards and building codes and research for improvement of specifications and standardisation of material properties.	RIA	4-5	6	x	x	x	x	x
4	Cost-effective printing equipment for construction applications	RIA	4-5	6	x	x	x	x	x
15	Integration of ergonomics, design and art in 3D printing built environment and related tools.	IA/CSA	5-6	7	x	x		x	x
6	Co-production and user participation for added- value construction.	IA/CSA	5-6	7	x	x	x	x	x
	Design for construction in AM, integrated with building information modelling (BIM) systems and topology optimisation	RIA	4-5	6		x	x	x	x
X	Multimaterial printing and integrating components in to the build	RIA	3-4	5-6	x	x	x	x	x
	Novel AM cost-effective manufacturing processes with high production rates validated in industrially- relevant construction products	RIA	4-5	6			x	x	x

5.10. ENERGY gaps and actions

Energy-specific actions were identified as reported in the roadmap shown in Figure 5.10. Key actions details (type of activity, initial and target TRL, related target product groups) are reported in Table 5-7.

	Modelling	Design	Material	Process	Post-process	Product	End of Life
		perforn temperature,	ent of new materia nances (light weigh reliable) and/or sn rials, sensorised m	it, strong, high nart (e.g. 4D printed	*		
Short term				of new multi- lti-voxel materials	2		
Shoi				3. Improved proc reproducibility of r technic	nozzle-based AM	A	
			4. Demonst	tration of AM higher manufacturing in t		ost-effective	<mark>∙ ∼</mark>
				5. Increasing m performances th manufac	nrough hybrid		
n Term			6. Production of	gies, robotics and	**** **		
Medium Term				7. Strategies for im quality : new mate and post-p	erials, processes	• 🛞	
			8. Scalabi	 *			
Long Term	9. Digital twin inc	cluding all simulatio		rameters that can ena in a few days	able the productio	n of "equivalent"	* *
Lon							

Figure 5.10: AM-MOTION Energy Roadmap

Table 5-7: AM-MOTION Energy actions details

			TI	RL				Tar	get Products			
N.	Action Name	Type of Activity	Initial TRL	Target TRL	Turbines parts	Oil and gas industry products	Renewable Energy industry components	Energy storage	Electromechanical and 3D electronic components	Floating Platforms components	Concept modelling, prototyping and design	Spare parts & repair
1	Development of new materials with improved performances (light weight, strong, high temperature, reliable) and/or smart (e.g. 4D printed materials, sensorised materials etc.)	RIA	4-5	6	x	x	x	x	x	x	x	x
2	Process of new multi-materials/multi-voxel materials	RIA	2-3	4-5	x	x	x	x	х	х	x	x
3	Improved process control and reproducibility of nozzle- based AM techniques	IA	4-6	7	x	x	x	x	x	x	x	x
4	Demonstration of AM higher productivity and cost-effective manufacturing in the energy sector	RIA	4-5	6	x	x	x	x	x	x	x	x
5	Increasing manufacturing performances through hybrid manufacturing	IA	5	6-7	x	x	x	x	x	x	x	x
6	Production of larger structures through AM technologies, robotics and artificial intelligence	RIA	4-5	6	x	x	x	x		х	x	x
7	Strategies for improving surface quality : new materials, processes and post-processes	IA	4-5	6	x	x	x	x	x	x	x	x
8	Scalability and modularity factors to promote de-localised manufacturing in the energy sector	RIA	1-3	4-5		x	x	x		x		x
9	Digital twin including all simulations and process parameters that can enable the production of "equivalent" spare parts in a few days	IA/CSA	5	6-7							x	x

6. AM-MOTION expected impact

AM-Motion project has the ambition to develop a strategy and set up the pillars for its efficient implementation that, ultimately, will contribute to reinforcing the European ecosystem of AM. Thanks to the adoption of AM there will be different impacts for Europe in addition to the economic and industrial aspects (already detailed in chapter 4), in particular in terms of better environment, improvement of quality of life, working condition, education, etc.. In detail:

Environment. Reduction of environmental impact is emerging as a critical issue in Europe. The adoption of AM technologies by the European industry would lead to introduce a benign environmental manufacturing. This technology possesses many advantages based on its capability to process only the material that comprises a part avoiding the generation of waste in the form of chips (e.g. subtracting technologies)⁵⁶. The creation of efficient designs would be also possible since designers would be completely free to put material only where needed with a more efficiently use. Moreover, freeform fabrication is expected to provide energy-efficient tooling to the industries working on injection moulds.

Health, quality of life, and working conditions. Building factories based on AM is believed to bring great benefits in health to society. Custom-Made Implants (CMIs) are considered to be a superior solution for the treatment of patients with rare and/or severe clinical conditions and they provide added value for all - patients, surgeons, medical institutions and health insurance funds. However, CMIs currently fail to achieve large-scale commercial success due to high price, long lead times and dominated surgical approach oriented towards standard solutions⁵⁷. CMI production by AM in a reliable and will contribute to reduce significantly CMI-related hospital care, surgery time and eventually the total cost per patient⁵⁸. On the other hand, the AM industrialization would contribute to the further growth of the European industry, making of it an even more knowledge-based industry and employing highly competent professionals. AM-Motion will also have impact on working conditions in factories. Unlike conventional fabrication processes, AM substantially reduce the interface between machines and workers, since machines operate most of the time autonomously. For instance, the global introduction of AM in production chains will shift workers tasks from assembly operations to support, inspect and control tasks and, consequently, the potential risks of accidents at the working place will decrease. Moreover, once the AM technologies are widely implanted in factories as a standard manufacturing process, new venues for shifting from mass-customization towards the mass-production of customized products will be opened, enhancing our quality life.

Education, training and employment. Deployment of AM will have an impact on traditional production models. New jobs will be created, thus new skills will be needed. Training and education establishments will need to preserve and develop the employability of workers, addressing the employer's needs. AM-Motion wants to contribute to educate a new generation of knowledge-based workers by means of raising awareness among key players, analysing industrial needs and educational approaches and facilitating educational tools

⁵⁶ Mélanie Despeisse, Simon Ford. *The Role of Additive Manufacturing in Improving Resource Efficiency and Sustainability*. Shigeki Umeda; Masaru Nakano; Hajime Mizuyama; Hironori Hibino; Dimitris Kiritsis; Gregor von Cieminski. IFIP International Conference on Advances in Production Management Systems (APMS), Sep 2015, Tokyo, Japan.

⁵⁷ https://cordis.europa.eu/project/rcn/211141 pl.html

⁵⁸ MMI (Medical Manufacturing Innovation). "Medical Additive Manufacturing/3D Printing. Annual Report 2018".

6.1. Expected impact of target actions

Eighteen economic, industrial, environmental and social impact indicators have been identified within AM-MOTION Consortium and Experts and evaluated in terms of relevance to describe the impact of AM related projects and activities. The relevance percentage of KPIs is shown in table 7.1.

	КРІ	Relevance
	Increased business generated	6%
Economic	Increased number of private companies involved	6%
	New types of ventures started	6%
	Potential for EU leadership	6%
	Increased IPR protection	6%
Industrial	Increased product quality and performances	7%
industriai	Increased production capacity	7%
	Reduced time to market	7%
	Reduced manufacturing cost	6%
	Material resource saving	6%
Environment	Reduction of CO2 emission	5%
Environment	Increased recycling	4%
	Better environment	5%
	Increased number of jobs	5%
	Jobs reshoring in EU	6%
Social	Decrease of inequalities	4%
	Better personal health	5%
	Better quality of life	5%

Table 6:1: Relevance of selected KPI

To better differentiate the impact analysis, the relevance was also calculated for merged Economic & Industrial impacts and Environmental & Social impacts.

	КРІ	Relevance
Economic &	Increased business generated	11%
	Increased number of private companies involved	10%
	New types of ventures started	10%
	Potential for EU leadership	10%
	Increased IPR protection	10%
Industrial	Increased product quality and performances	12%
	Increased production capacity	13%
	Reduced time to market	13%
	Reduced manufacturing cost	11%

 Table 6:2: Relevance of selected KPI (Economic+Industrial and Environmental+Social)

	KPI	Relevance
	Material resource saving	13%
	Reduction of CO2 emission	11%
	Increased recycling	10%
Environment	Better environment	11%
&	Increased number of jobs	11%
Social	Jobs reshoring in EU	13%
	Decrease of inequalities	10%
	Better personal health	11%
	Better quality of life	11%

The identified KPIs were at the base of a qualitative evaluation of the impacts of the different actions for each sector as well as Cross Cutting Technical and Non-Technical actions.

The qualitative evaluation was based on a 1-5 scale, considering:

- 1: Very Low impact
- 2: Low Impact
- 3: Average Impact
- 4: Relevant Impact
- 5: Very high impact.

The aim of the analysis was to determine, for each sector:

- the overall higher impacts (for each industrial, economic, environmental and social KPI)
- the actions that, if implemented, could have higher impact for the sector, differentiated for economic & industrial Impacts and Environmental & Social Impacts.
- the overall average impact value of the actions, in terms Economic & Industrial Impacts and Environmental & Social Impacts

Here below are reported the main outcomes of the analysis.

6.1.1. TECHNOLOGICAL CROSS-CUTTING impacts

As shown in Figure 6.1, from the analysis of the Technical Cross cutting overall average of KPI, the future actions will have on a strong impact on:

- Industrial: Increased product quality and performances 4,8
- **Economic:** Increased business generated 3,9
- Environmental: Material resource saving 3,6
- **Social:** Increased number of jobs 3,6

	Technica	al Cross Cutting	g - Key Im	npacts	s Ranked			
Industrial Indicators		Social Indicator	'S			Environmer	tal Indic	ators
Increased product quality and performances	Potential for EU leadership	Increased numl jobs 3,6	jobs Jobs I		shoring in EU 3,3	Material resource saving 3,6		Increased recycling
4,8 Increased production capacity 4,1	4,2 Reduced time to market 4,0	Decrease of inequalities 2,6	Better qu of life 2,6	е	Better personal health 2,4	3,6 Better environment 3,0		3,0 Reduction of CO2 emission 2,9
		Economic Indic	ators					
Reduced manufacturing cost 3,9 3,3		Economic Indicators			Increased number of private companies involved 3,7		New types of ventures started 3,6	
	Economic Indicators	dustrial Indicators	Environn	mental	Indicators Soc	cial Indicators		

Figure 6.1: Technical Cross Cutting - Impacts Ranking

The other outcome of the analysis is related to target actions. The aim was evaluating actions individually and ranking them to understand which ones will have a higher impact in the future within the considered sector. **Error! Reference source not found.** reports the results for each action divided for conomics & Industrial impacts and Environmental & Social impacts, in particular it emerges that:

- For Economic and Industrial Impacts: Quality management systems: need for definition of key quality affecting parameters for various AM systems& applications
- For Environmental and Social Impacts: Integrating AM technologies into existing industrial processes/chains

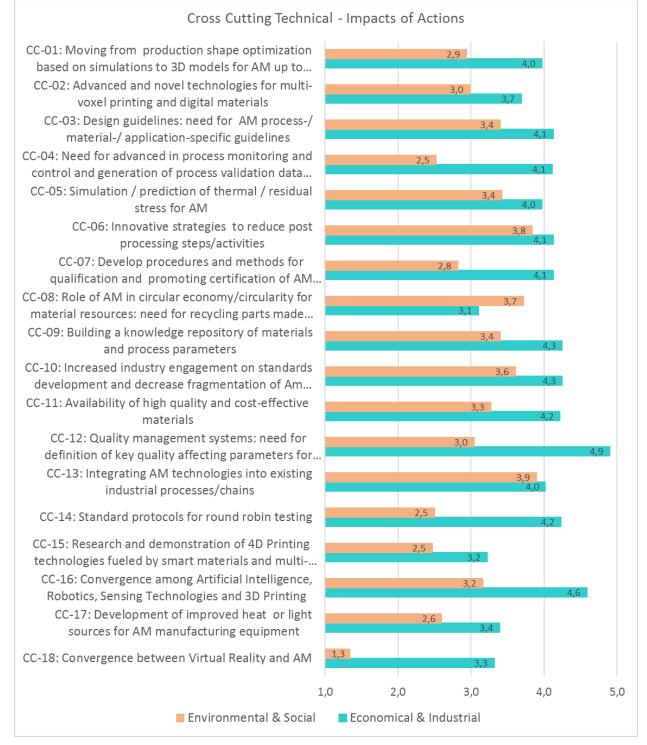


Figure 6.2: Technical Cross Cutting – Impacts of Action

Finally, in Figure 6.3 is shown the overall average impact value of the actions, in terms Economic & Industrial Impacts and Environmental & Social Impacts.

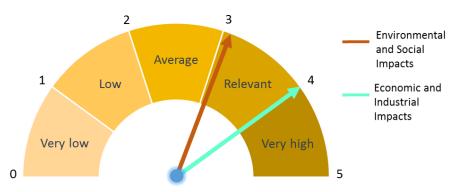


Figure 6.3: Technical Cross cutting - Overall Average Impacts

6.1.2. NON-TECHNOLOGICAL CROSS CUTTING impacts

As shown in Figure 6.4, from the analysis of the Non-Technical Cross Cutting overall average of KPI, the future actions will have on a strong impact on:

- Industrial Impacts: Potential for EU leadership- 4,4
- Economic Impacts: Increased business generated 4,4
- Environmental Impacts: Material resource saving 3,9
- Social Impacts: Jobs reshoring in EU 4,5

	Non-1	Technical Cross Cu	utting - Ke	ey Impa	cts Ranked			
Industrial Indicators		Social Indicators				Economic Indicators	;	
Potential for EU leadership 4,4	Increased product quality and performances 4,3	Jobs reshoring in E 4,5		j	l number of obs 1,4	Increased business generated 4,4		
Reduced time to market 3,9	Reduced	Decrease of inequalities 3,1	ecrease of Better quality of perso equalities life heal		Better personal health 2,8	Increased number of companies invo 4,4 New types of ventu 3,9	lived	
		Environmental Inc	licators					
Increased production capacity 3,6	Increased IPR protection 3,0	Environmental Indicators		Better environment 2,9		Increased recycling 2,8	Reduction of CO2 emission 2,3	
	Economic Indicators	Industrial Indicato	rs 💻 Enviro	onmenta	Indicators S	ocial Indicators		

Figure 6.4: Non-Technical Cross Cutting - Impacts Ranking

The other outcome of the analysis is related to target actions. The aim was evaluating actions individually and ranking them to understand which ones will have a higher impact in the future within the considered sector. Figure 6.5 reports the results for each action divided for Economics & Industrial impacts and Environmental & Social impacts, in particular it emerges that:

- For Economic and Industrial Impacts: Innovative AM sustainable business models
- For Environmental and Social Impacts: Innovative AM sustainable business models

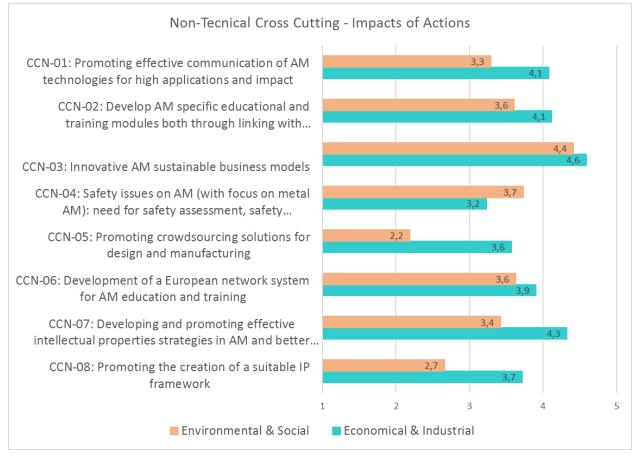


Figure 6.5: Non-Technical Cross Cutting – Impacts of Action

Finally, in Figure 6.6 is shown the overall average impact value of the actions, in terms Economic & Industrial Impacts and Environmental & Social Impacts.



Figure 6.6: Non-Technical Cross Cutting - Overall Average Impacts

6.1.3. HEALTH impacts

As shown in Figure 6.7, from the analysis of the Health overall average of KPI, the future actions will have on a strong impact on:

- Industrial Impacts: Potential for EU leadership 4,5
- Economic Impacts: Increased number of private companies involved 4,3
- Environmental Impacts: Material resource saving 3,6
- Social Impacts: Better personal Health 3,9

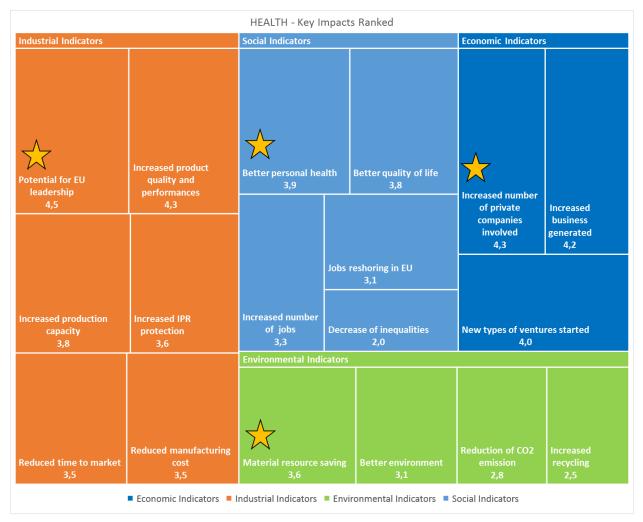


Figure 6.7: Health - Impacts Ranking

The other outcome of the analysis is related to target actions. Figure 6.8 reports the results for each action divided for Economics & Industrial impacts and Environmental & Social impacts, in particular it emerges that the higher-impacts actions are:

- For Economic and Industrial Impacts: Novel biomaterials suitable for AM with focus on material variety and large production at lower cost
- For Environmental and Social Impacts: Smart products with improved functionalities

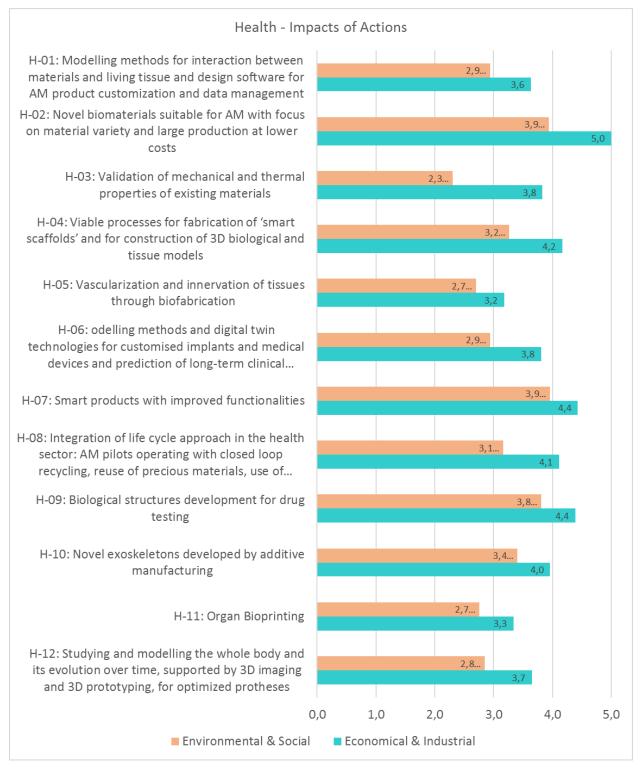


Figure 6.8: Health – Impacts of Actions

Finally, in Figure 6.9 is shown the overall average impact value of the actions, in terms Economic & Industrial Impacts and Environmental & Social Impacts.

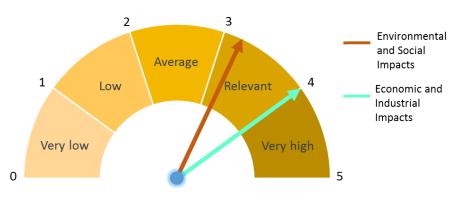
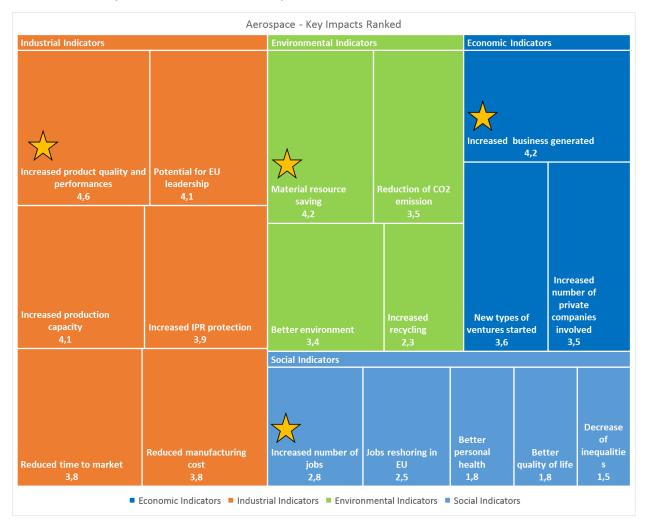


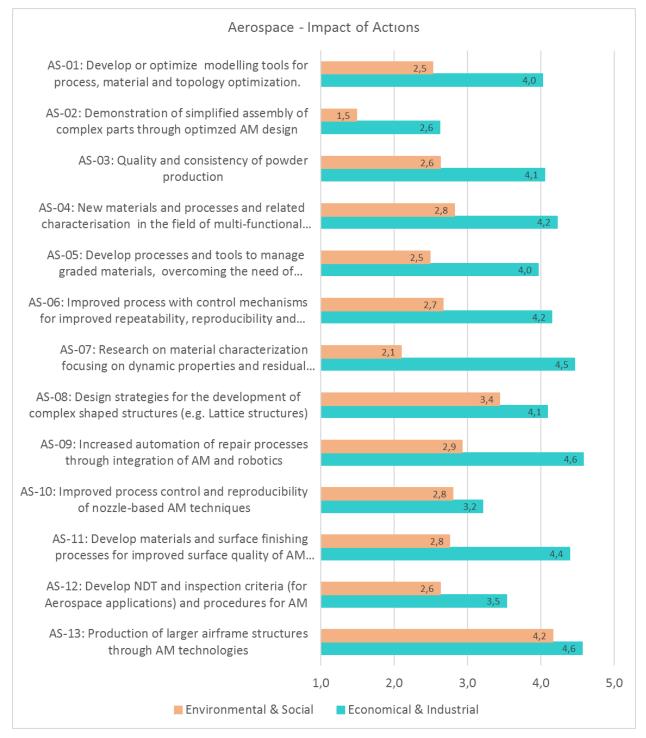
Figure 6.9: Health - Overall Average Impacts

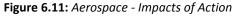
6.1.4. AEROSPACE impacts

As shown in Figure 6.10, from the analysis of the Health overall average of KPI, the future actions will have on a strong impact on:

- Industrial Impacts: Increased product quality and performances 4,6
- **Economic Impacts:** Increased business generated 4,2
- Environmental Impacts: Material resource saving 4,2
- Social Impacts: Increased number of jobs 2,8




Figure 6.10: Aerospace - Impacts Ranking


The other outcome of the analysis is related to target actions. Figure 6.11 reports the results for each action divided for Economics & Industrial impacts and Environmental & Social impacts, in particular it emerges that the higher-impacts actions are:

• For Economic and Industrial Impacts: Increased automation of repair processes through integration of AM and robotics; Production of larger airframe structures through AM technologies

• For Environmental and Social Impacts: Production of larger airframe structures through AM technologies

Finally, in Figure 6.12 is shown the overall average impact value of the actions, in terms Economic & Industrial Impacts and Environmental & Social Impacts.

Deliverable D5.3

Figure 6.12: Aerospace - Overall Average Impacts

6.1.5. AUTOMOTIVE impacts

As shown in Figure 6.13, from the analysis of the Health overall average of KPI, the future actions will have on a strong impact on:

- Industrial Impacts: Potential for EU leadership 4,6
- Economic Impacts: Increased business generated 4,3
- Environmental Impacts: Material resource saving 3,3
- Social Impacts: Increased number of jobs 3,9

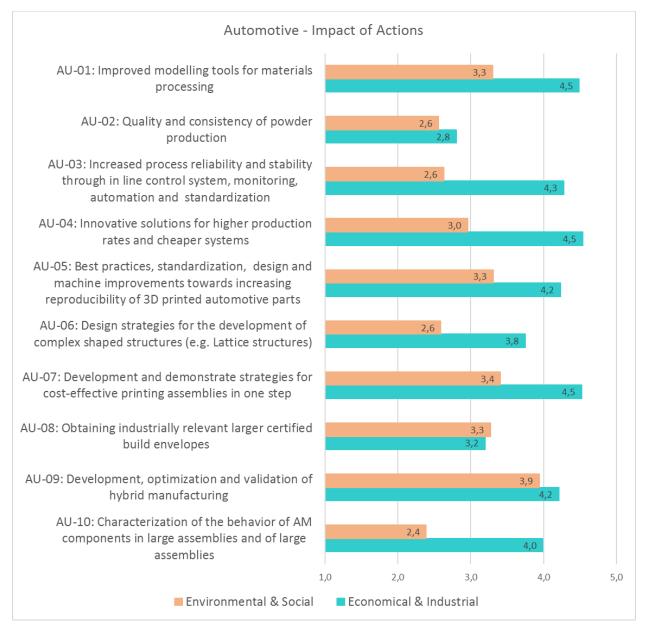


Figure 6.13: Automotive - Impacts Ranking

The other outcome of the analysis is related to target actions. Figure 6.14 reports the results for each action divided for Economics & Industrial impacts and Environmental & Social impacts, in particular it emerges that the higher-impacts actions are:

- For Economic and Industrial Impacts: Innovative solutions for higher production rates and cheaper systems; Development and demonstrate strategies for cost-effective printing assemblies in one step; Improved modelling tools for materials processing
- For Environmental and Social Impacts: Development, optimization and validation of hybrid manufacturing

Finally, in Figure 6.15 is shown the overall average impact value of the actions, in terms Economic & Industrial Impacts and Environmental & Social Impacts.

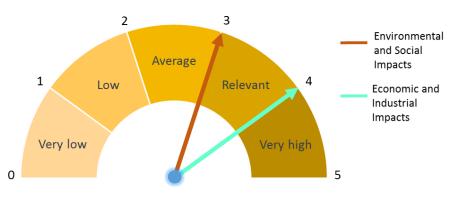


Figure 6.15: Automotive - Overall Average Impacts

6.1.6. CONSUMER GOODS & ELECTRONICS impacts

As shown in Figure 6.16, from the analysis of the Health overall average of KPI, the future actions will have on a strong impact on:

- Industrial Impacts: Product time to market- 3,7
- Economic Impacts: Increased business generated; Increased number of private companies involved 4
- Environmental Impacts: Material resource saving 3,4
- Social Impacts: Increased number of jobs 3,3

Figure 6.16: Consumer Goods & Electronics - Impacts Ranking

The other outcome of the analysis is related to target actions. Figure 6.17 reports the results for each action divided for Economics & Industrial impacts and Environmental & Social impacts, in particular it emerges that the higher-impacts actions are:

- For Economic and Industrial Impacts: Promoting mass customization of AM consumer products, including collective design (co-creation) and fabrication strategies; Improving process sustainability through flexible and hybrid manufacturing and industry 4.0 approaches
- For Environmental and Social Impacts: Promoting mass customization of AM consumer products, including collective design (co-creation) and fabrication strategies; Improving process sustainability through flexible and hybrid manufacturing and industry 4.0 approaches

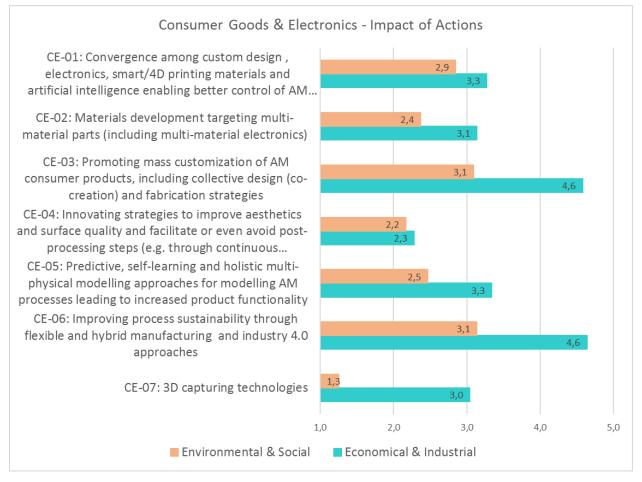


Figure 6.17: Consumer Goods & Electronics – Impacts of Action

Finally, in Figure 6.18 is shown the overall average impact value of the actions, in terms Economic & Industrial Impacts and Environmental & Social Impacts.

Figure 6.18: Consumer Goods & Electronics - Overall Average Impacts

6.1.7. INDUSTRIAL EQUIPMENT AND TOOLING impacts

As shown in Figure 6.19, from the analysis of the Health overall average of KPI, the future actions will have on a strong impact on:

- Industrial Impacts: Increased product quality and performances; Increased production capacity 4,2
- Economic Impacts: Increased business generated 3,9
- Environmental Impacts: Material resource saving 3,4
- **Social Impacts:** Job reshoring in EU 3,2

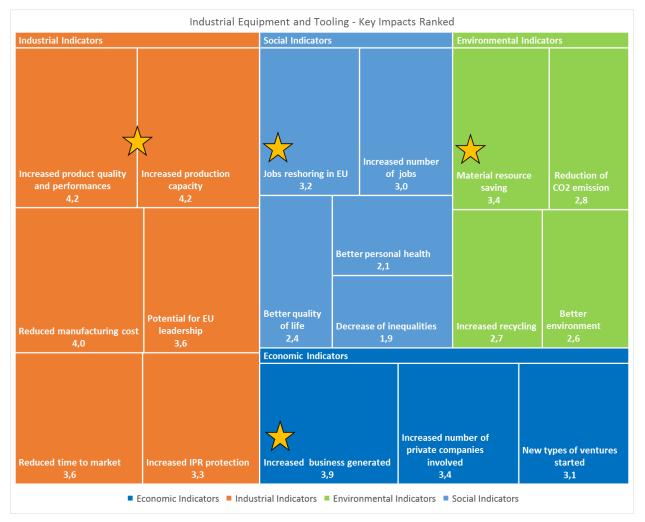
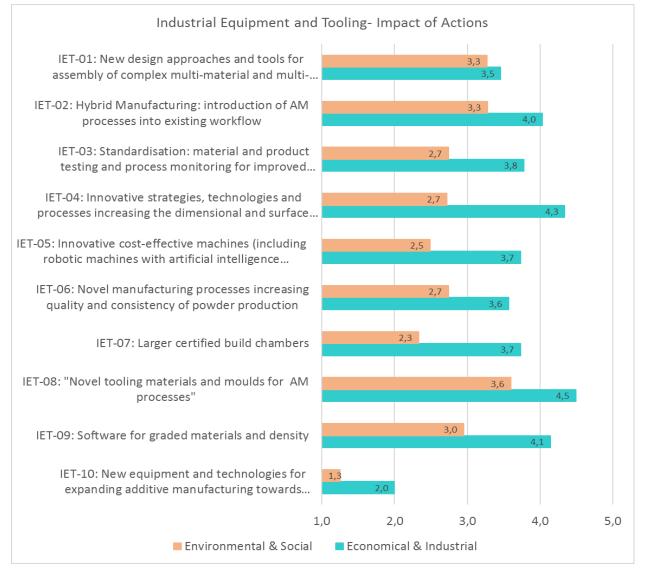



Figure 6.19: Industrial Equipment and Tooling - Impacts Ranking

The other outcome of the analysis is related to target actions. Figure 6.20 reports the results for each action divided for Economics & Industrial impacts and Environmental & Social impacts, in particular it emerges that the higher-impacts actions are:

- For Economic and Industrial Impacts: Novel tooling materials and moulds for AM processes
- For Environmental and Social Impacts: Novel tooling materials and moulds for AM processes

Figure 6.20: Industrial Equipment and Tooling – Impacts of Action

Finally, in Figure 6.21 is shown the overall average impact value of the actions, in terms Economic & Industrial Impacts and Environmental & Social Impacts.



Figure 6.21: Industrial Equipment and Tooling - Overall Average Impacts

6.1.8. CONSTRUCTION impacts

As shown in Figure 6.22, from the analysis of the Health overall average of KPI, the future actions will have on a strong impact on:

- Industrial Impacts: Reduced manufacturing cost 3,7
- Economic Impacts: New types of ventures started 3,3
- Environmental Impacts: Material resource saving; Reduction of CO2 emission 3,0
- Social Impacts: Better quality life 2.9

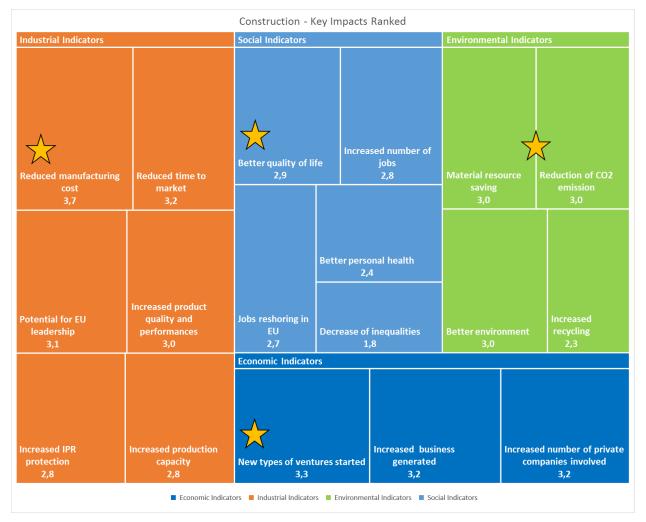


Figure 6.22: Construction - Impacts Ranking

The other outcome of the analysis is related to target actions. Figure 6.23 reports the results for each action divided for Economics & Industrial impacts and Environmental & Social impacts, in particular it emerges that the higher-impacts actions are:

- For Economic and Industrial Impacts: Methodologies to integrate concrete reinforcements in AM construction
- For Environmental and Social Impacts: Multimaterial printing and integrating components in to the build

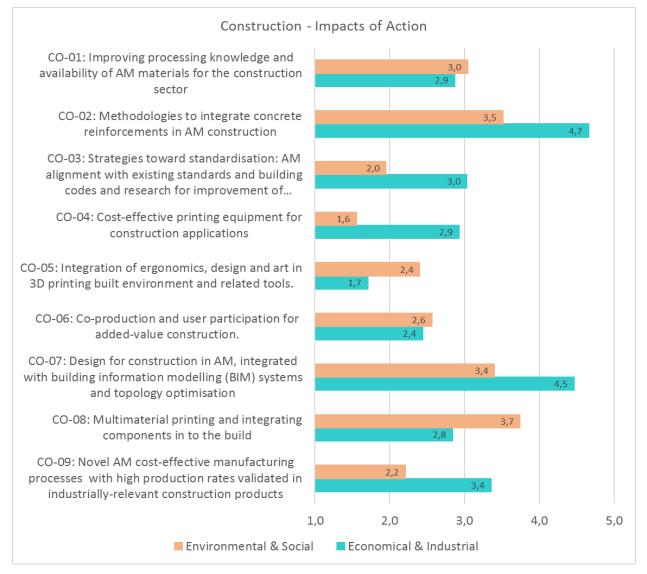


Figure 6.23: Construction - Impacts of Action

Finally, in Figure 6.24 is shown the overall average impact value of the actions, in terms Economic & Industrial Impacts and Environmental & Social Impacts.



Figure 6.24: Construction - Overall Average Impacts

6.1.9. ENERGY impacts

As shown in Figure 6.25, from the analysis of the Health overall average of KPI, the future actions will have on a strong impact on:

- Industrial Impacts: Increased product quality and performances 4,6
- Economic Impacts: Increased business generated 4,8
- Environmental Impacts: Material resource saving 3,4
- Social Impacts: Job reshoring in EU 3,4

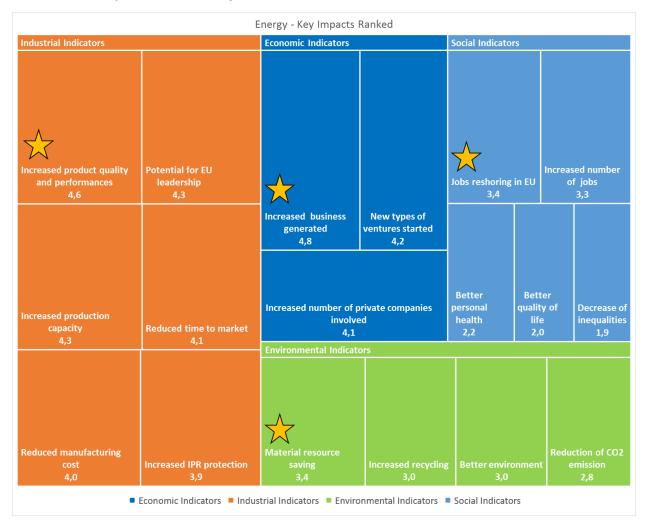


Figure 6.25: Energy - Impacts Ranking

The other outcome of the analysis is related to target actions. Figure 6.26 reports the results for each action divided for Economics & Industrial impacts and Environmental & Social impacts, in particular it emerges that the higher-impacts actions are:

- For Economic and Industrial Impacts: Demonstration of AM higher productivity and costeffective manufacturing in the energy sector
- For Environmental and Social Impacts: Demonstration of AM higher productivity and costeffective manufacturing in the energy sector

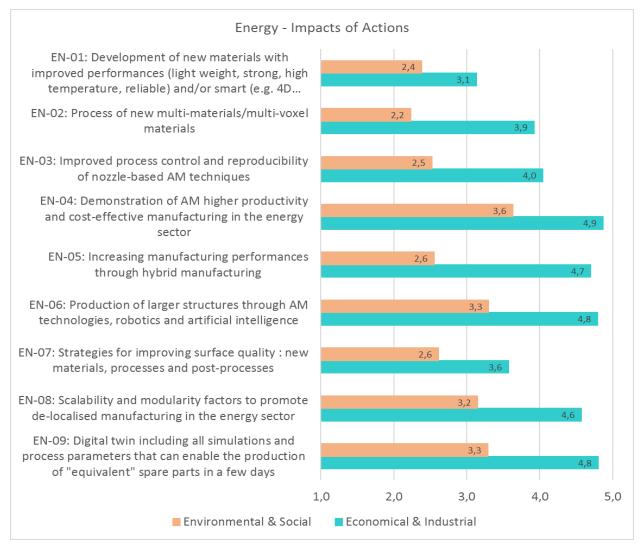


Figure 6.26: Energy - Impacts of Action

Finally, in Figure 6.27 is shown the overall average impact value of the actions, in terms Economic & Industrial Impacts and Environmental & Social Impacts.

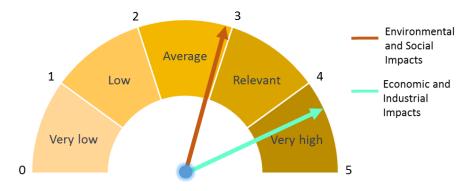


Figure 6.27: Energy - Overall Average Impacts

7. Conclusion

The current reports describe the draft AM-MOTION roadmap aimed at identifying future actions for the AM development and successful market uptake. The roadmap focuses on high impact sectors (described in the report) and related target product groups, includes a vision for 2030 and based on identified challenges and opportunities, proposes a set of sectorial and cross-cutting actions for short, medium and long term.

The roadmap has been developed involving around 100 external experts through physical meetings and remote surveys.

The full draft Roadmap will be publicly available at the end of July 2018. In August-September 2018 the whole community will be asked to participate online to a public consultation.

The revision of the roadmap will lead to the release of the Final AM-MOTION Roadmap, to be presented at "AMEF2018 Additive Manufacturing European Forum" (Brussels, 23-24 October). In such revision the results of business model collaboration activities performed in AM-MOTION (WP4, D4.3) will be also integrated in the roadmap.

ANNEX A: List of European AM Related Projects

FP7-PEOPLE: 9 Projects

Acronym-Project full title	Work program me	ID	Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
D-FOOT PRINT -Personalised insoles via additive manufacture for the prevention of plantar ulceration in diabetes	PEOPLE	329133	14/10/2013	13/10/2015	196.682,10 (196.682,10)	THE GLASGOW CALEDONIAN UNIVERSITY	UK
DiGHiRO-Digital Generation of High Resolution Objects	PEOPLE	256530	01/05/2010	30/04/2014	100.000 (100.000)	AALTO-KORKEAKOULUSAATIO	FI
FlowMat -Exploiting Flow and Capillarity in Materials Assembly: Continuum Modelling and Simulation	PEOPLE	618335	01/09/2013	31/08/2017	100.000 (100.000)	QUEEN MARY UNIVERSITY OF LONDON	UK
INLADE-Integrated numerical modelling of laser additive processes	PEOPLE	230756	01/02/2009	31/01/2013	329.529 (329.529)	THE UNIVERSITY OF MANCHESTER	UK
INTERAQCT -International Network for the Training of Early stage Researchers on Advanced Quality control by Computed Tomography	PEOPLE	607817	01/10/2013	30/09/2017	3.850.553,52	KATHOLIEKE UNIVERSITEIT LEUVEN	BE
PRINT CART -Bioprinting of novel hydrogel structures for cartilage tissue engineering	PEOPLE	272286	01/07/2011	30/06/2014	265.944,80	UNIVERSITAIR MEDISCH CENTRUM UTRECHT	NL
RRD4E2 -Rational Reactor Design for Enhanced Efficiency in the European Speciality Chemicals Industry	PEOPLE	607114	01/10/2013	30/09/2017	668.456,97	LONZA AG	СН
SphereScaff -The Manufacturing of Scaffolds from Novel Coated Microspheres via AM Techniques for Temporomandibular Joint Tissue Engineering	PEOPLE	622414	01/08/2014	31/07/2016	245.897,90	NATIONAL UNIVERSITY OF IRELAND, GALWAY	IE
VINDOBONA -VINyl photopolymer Development Of BONe replacement Alternatives	PEOPLE	297895	01/01/2013	31/12/2014	187.888,20	TECHNISCHE UNIVERSITAET WIEN	AT

H2020-MSCA: 6 Projects

Acronym-Project full title	Work program me	ID	Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
Bamos -Biomaterials and Additive Manufacturing: Osteochondral Scaffold innovation applied to osteoarthritis	MSCA- RISE	734156	01/01/2017	31/12/2020	828.000 (639.000)	University of Kragujevac (Serbia)	SB
DISTRO-Distributed 3D Object Design	MSCA-ITN	642841	01/01/2015	31/12/2018	3.264.733 (3.264.733)	University of Las Palmas de Gran Canaria	ES
NEXT-3D -Next generation of 3D multifunctional materials and coatings for biomedical applications	MSCA- RISE	645749	01/06/2015	31/05/2017	193.500 (193.500)	UNIVERSITY COLLEGE LONDON	UK

Acronym-Project full title	Work program me	ID	Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
PAM 2-Precision Additive Metal Manufacturing	MSCA-ITN	721383	01/12/2016	30/11/2020	3.944.925,36 (3.944.925,36)	THE UNIVERSITY OF BIRMINGHAM	UK
Revolve -Radio Technologies for Broadband Connectivity in a Rapidly Evolving Space Ecosystem: Innovating Agility, Throughput, Power, Size and Cost	MSCA-ITN	722840	01/01/2017	31/12/2020	1.834.895,07 (1.834.895,07)	KATHOLIEKE UNIVERSITEIT LEUVEN	BE
A_Madam -Advanced design rules for optimMAI Dynamic properties of Additive Manufacturing products	MSCA- RISE	734455	01/01/2017	31/12/2020	468.000 (468.000)	HWU- Heriot-Watt University	UK

FP7-NMP: 35 Projects

Acronym-Project full title	Work program me	ID	Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
A-FOOT PRINT-Ankle and Foot Orthotic Personalisation via Rapid Manufacturing	NMP	228893	01/10/2009	30/09/2013	5.304.317,66 (3729043)	THE GLASGOW CALEDONIAN UNIVERSITY	UK
ArtiVasc 3D-Artificial vascularised scaffolds for 3D-tissue-regeneration	NMP	263416	01/11/2011	31/10/2015	10.467.338,60 (7800000)	FRAUNHOFER	DE
Bio-Scaffolds -Natural inorganic polymers and smart functionalized micro-units applied in customized rapid prototyping of bioactive scaffolds	NMP	604036	01/06/2013	31/05/2016	2.278.935,20 (1799002)	UNIVERSITAETSMEDIZIN DER JOHANNES GUTENBERG- UNIVERSITAET MAINZ	DE
CompoLight- Rapid Manufacturing of lightweight metal components	NMP	213477	01/11/2008	31/10/2011	4.608.786,66 (3508954)	TEKNOLOGISK INSTITUT	DK
DirectSpare -Strengthening the industries' competitive position by the development of a logistical and technological system for "spare parts" that is based on on-demand production	NMP	213424	01/02/2009	31/01/2012	5.663.047,79 (3576945)	MATERIALISE NV	BE
HydroZone s- Bioactivated hierarchical hydrogels as zonal implants for articular cartilage regeneration	NMP	309962	01/01/2013	31/12/2017	13.195.256,71 (9749700)	UNIVERSTAETSKLINIKUM WUERZBURG	DE
IC2-Intelligent and Customized Tooling	NMP	246172	01/10/2010	30/09/2013	4.605.138,52 (3199995)	SINTEF Raufoss Manufacturing AS	NO
IMPALA-Intelligent Manufacture from Powder by Advanced Laser Assimilation	NMP	214380	01/09/2008	31/08/2012	6.376.380,50 (4607490)	TWI LIMITED	UK
LIGHT-ROLLS -High-throughput production platform for the manufacture of light emitting components	NMP	228686	01/07/2009	31/12/2012	5.172.419 (3748323)	FUNDACION PRODINTEC	ES

Acronym-Project full title	Work program me	ID	Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
MULTILAYER-Rolled multi material layered 3D shaping technology	NMP	214122	01/10/2008	31/10/2012	9.032.822,20 (6500000)	COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES	FR
OXIGEN -Oxide Dispersion Strengthened Materials for the Additive Manufacture of High Temperature Components in Power Generation	NMP	310279	01/02/2013	31/01/2017	5.679.519,75 (3999662)	TWI LIMITED	UK
PILOT MANU -Pilot manufacturing line for production of highly innovative materials	NMP	604344	01/10/2013	30/09/2017	5.354.079 (4014465)	MBN NANOMATERIALIA SPA	IT
PLASMAS-Printed Logic for Applications of Screen Matrix Activation Systems	NMP	604568	01/11/2013	30/04/2017	4.801.521,80 (3635432)	FRAUNHOFER	DE
STEP UP -STEP UP IN POLYMER BASED RM PROCESSES	NMP	213927	01/01/2009	31/12/2012	4.436.178 (3159200)	MBN NANOMATERIALIA SPA	IT
DIGINOVA-Innovation for Digital Fabrication	NMP	290559	01/03/2012	28/02/2014	1.676.173,50 (1265785)	OCE TECHNOLOGIES B.V.	NL
SASAM-Support Action for Standardisation in Additive Manufacturing	NMP	319167	01/09/2012	28/02/2014	682.654,80 (495000)	TNO	NL
3D-HiPMAS -Pilot Factory for 3D High Precision MID Assemblies	NMP-FoF	314293	01/10/2012	30/09/2015	5.350.276,20 (3499600)	HAHN-SCHICKARD-GESELLSCHAFT FUER ANGEWANDTE FORSCHUNG E.	DE
ADDFACTOR -ADvanced Digital technologies and virtual engineering for mini- Factories	NMP-FoF	609386	01/09/2013	31/12/2016	8.919.730,87 (5499959)	SYNESIS-SOCIETA	IT
AMAZE -Additive Manufacturing Aiming Towards Zero Waste & Efficient Production of High-Tech Metal Products	NMP-FoF	313781	01/01/2013	2017-06	18.295.541,46 (10156000)	THE MANUFACTURING TECHNOLOGY CENTRE LIMITED LBG	UK
AMCOR-Additive Manufacturing for Wear and Corrosion Applications	NMP-FoF	314324	01/11/2012	31/10/2015	4.770.044,63 (3000000)	TWI LIMITED	UK
CassaMobile -Flexible Mini-Factory for local and customized production in a container	NMP-FoF	609146	01/09/2013	31/08/2016	8.747.873,19 (5.650.000)	FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.	DE
FaBiMed-Fabrication and Functionalization of BioMedical Microdevices	NMP-FoF	608901	02/09/2013	01/09/2016	4.133.747,13 (3.010.000)	ASOCIACION DE INVESTIGACION METALURGICA DEL NOROESTE	ES
Factory-in-a-day	NMP-FoF	609206	01/10/2013	30/09/2017	11.111.309,10 (7968232)	TECHNISCHE UNIVERSITEIT DELFT	NL
Hi-Micro-High Precision Micro Production Technologies	NMP-FoF	314055	01/10/2012	30/09/2015	5.194.962,40 (3499997)	KATHOLIEKE UNIVERSITEIT LEUVEN	BE
HiPR-High-Precision micro-forming of complex 3D parts	NMP-FoF	314522	01/11/2012	31/10/2015	5.013.745 (3317932)	D'APPOLONIA SPA	ІТ

Acronym-Project full title	Work program me	ID	Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
Hyproline-High performance Production line for Small Series Metal Parts	NMP-FoF	314685	01/09/2012	31/08/2015	4.017.939,50 (2538000)	TNO	NL
MANSYS -MANufacturing decision and supply chain management SYStem for additive manufacturing	NMP-FoF	609172	01/07/2013	30/06/2016	4.405.531,92 (2925000)	TWI LIMITED	UK
MEGAFIT -Manufacturing Error-free Goods at First Time	NMP-FoF	285030	01/12/2011	30/11/2014	10.316.668,70 (6911469)	PHILIPS CONSUMER LIFESTYLE B.V.	NL
NANOMASTER -Graphene based thermoplastic masterbatches for conventional and additive manufacturing processes	NMP-FoF	285718	01/12/2011	30/11/2015	6.253.514,31 (4199974)	NETCOMPOSITES LIMITED	UK
Nextfactory -All-in-one manufacturing platform for system in package and micromechatronic systems	NMP-FoF	608985	01/09/2013	31/08/2017	4.758.207,20 (3.483.177)	FRAUNHOFER	DE
OPTICIAN2020 -Flexible and on-demand manufacturing of customised spectacles by close-to optician production clusters	NMP-FoF	609251	01/10/2013	30/09/2016	5.770.512,80 (3614999)	FUNDACIO EURECAT	ES
PHOCAM -Photopolymer based customized additive manufacturing technologies	NMP-FoF	260043	01/06/2010	31/05/2013	3.609.446,60 (2455362)	TECHNISCHE UNIVERSITAET WIEN	AT
PLAST 4FUTURE -injection Moulding Production Technology for Multi-functional Nano-structured Plastic Components enabled by NanoImprint Lithography	NMP-FoF	314345	01/01/2013	31/12/2015	9.547.981,11 (6000000)	DANMARKS TEKNISKE UNIVERSITET	DK
SMART LAM -Smart production of Microsystems based on laminated polymer films	NMP-FoF	314580	01/10/2012	31/01/2016	3.633.791,70 (2673000)	KARLSRUHER INSTITUT FUER TECHNOLOGIE	DE
Stellar -Selective Tape-Laying for Cost-Effective Manufacturing of Optimised Multi-Material Components	NMP-FoF	609121	01/09/2013	31/08/2016	4.007.208 (2774266)	NETCOMPOSITES LIMITED	UK

H2020-LEIT NANO +LEIT ADVMANU: 21 Projects

Acronym-Project full title	Work program me	ID	Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
iBUS – an integrated business model for customer driven custom product supply chains	NMP	646167	01/09/2015	31/08/2019	7.440.361,25 (6065305)	UNIVERSITY OF LIMERICK	IE
DIMAP -Novel nanoparticle enhanced Digital Materials for 3D Printing and their application shown for the robotic and electronic industry	NMP	685937	01/10/2015	30/09/2018	4.997.351,25 (4997351,25)	PROFACTOR GMBH	AT
FAST-Functionally graded Additive Manufacturing scaffolds by hybrid manufacturing	NMP	685825	01/12/2015	30/11/2019	4.916.750 (4916750)	UNIVERSITEIT MAASTRICHT	NL
NANOTUN3D -Development of the complete workflow for producing and using a novel nanomodified Ti-based alloy for additive manufacturing in special applications.	NMP	685952	01/10/2015	31/03/2019	2.936.657 (2936656)	AIDIMME	ES
SYNAMERA -Synergies in Nanotechnologies, Materials and Production in the European Research Area	NMP	645900	01/05/2015	30/04/2017	496.221,25 (496.221,25)	REGION NORD-PAS-DE-CALAIS ET PICARDIE	FR
PRINTCR3DIT -Process Intensification through Adaptable Catalytic Reactors made by 3D Printing	SPIRE	680414	01/10/2015	30/09/2018	5.493.891,00 (5493889)	STIFTELSEN SINTEF	NO
SUPREME -Sustainable and flexible powder metallurgy processes optimization by a holistic reduction of raw material resources and energy consumption.	SPIRE	768612	01/09/2017	2020-08-31	9.810.119 (7959642,89)	CEA	FR
Hyprocell -Development and validation of integrated multiprocess HYbrid PROduction CELLs for rapid individualized laser-based production	FoF	723538	01/11/2016	31/10/2019	6.163.607,50 (3937331)	LORTEK S COOP	ES
Z-Fact0r -Zero-defect manufacturing strategies towards on-line production management for European factories	FoF	723906	01/10/2016	31/03/2020	6.043.018,75 (4206252,88)	ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS CHARILAOU THERMI	GR
4DHybrid -Novel ALL-IN-ONE machines, robots and systems for affordable, worldwide and lifetime Distributed 3D hybrid manufacturing and repair operations	FoF	723795	01/01/2017	31/12/2019	9.429.875 (4990000)	PRIMA ELECTRO SPA	IT
Borealis – the 3A energy class Flexible Machine for the new Additive and Subtractive Manufacturing on next generation of complex 3D metal parts.	FoF	636992	01/01/2015	31/12/2017	7.986.625 (5968875)	Prima Industrie SpA	IT
CerAMfacturing -Development of ceramic and multi material components by additive manufacturing methods for personalized medical products	FoF	678503	01/10/2015	30/09/2018	5.121.799,50 (5.121.799,50)	FRAUNHOFER	DE
HINDCON -Hybrid INDustrial CONstruction through a 3D printing "all-in-one" machine for largescale advanced manufacturing and building processes	FoF	723611	15/09/2016	14/09/2019	4.798.205 (4.798.205)	VIAS Y CONSTRUCCIONES	ES
KRAKEN -Hybrid automated machine integrating concurrent manufacturing processes, increasing the production volume of functional on-demand using high multi-material deposition rates	FoF	723759	01/10/2016	30/09/2019	5.947.836,25 (4711586,25)	FUNDACION AITIIP	ES

Acronym-Project full title	Work program me	ID	Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
LASIMM-Large Additive Subtractive Integrated Modular Machine	FoF	723600	01/10/2016	30/09/2019	4.868.262,50 (4.868.262,50)	EUROPEAN FEDERATION FOR WELDING JOINING AND CUTTING	BE
OpenHybrid -Developing a novel hybrid AM approach which will offer unrivalled flexibility, part quality and productivity	FoF	723917	01/10/2016	30/09/2019	6.643.718,75 (5133381,25)	THE MANUFACTURING TECHNOLOGY CENTRE LIMITED LBG	UK
REProMag -Resource Efficient Production Route for Rare Earth Magnets	FoF	636881	01/01/2015	31/12/2017	5.726.365 (5.726.365)	OBE OHNMACHT & BAUMGARTNER GMBH & CO KG	DE
Symbionica -Reconfigurable Machine for the new Additive and Subtractive Manufacturing of next generation fully personalized bionics and smart prosthetics	FoF	678144	01/10/2015	30/09/2018	7.305.000 (4908750)	THE MANUFACTURING TECHNOLOGY CENTRE LIMITED LBG	UK
ToMAx-Toolless Manufacturing of Complex Structures	FoF	633192	01/01/2015	31/12/2017	3.157.986 (3.157.986)	TECHNISCHE UNIVERSITAET WIEN	AT
AM-motion -A strategic approach to increasing Europe's value proposition for Additive Manufacturing technologies and capabilities	FoF	723560	01/11/2016	31/12/2018	993.052,50 (993.052,50)	FUNDACION PRODINTEC	ES
FoFAM -Industrial and regional valorization of FoF Additive Manufacturing Projects	FoF	636882	01/01/2015	31/12/2016	348.210 (348.210)	FUNDACION PRODINTEC	ES

FP7-ICT: 1 project

Acronym-Project full title	Work program me	ID	Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
Fabulous-FDMA Access By Using Low-cost Optical Network Units in Silicon Photonics	ІСТ	318704	01/10/2012	30/06/2016	4.327.394 (2900000)	ISTITUTO SUPERIORE MARIO BOELLA SULLE TECNOLOGIE DELL'INFORMAZIONE E DELLE TELECOMUNICAZIONI	IT

H2020-LEIT ICT: 11 projects

Acronym-Project full title	Work program me	ID	Startingdate	End date	Total project budget (€) (EU contribution)	Coordinator	Country
AMABLE-AdditiveManufacturABLE	FoF	768775	01/09/2017	31/08/2021	8.217.959 (8001358,75)	FRAUNHOFER	DE
CAXMAN-Computer Aided Technologies for Additive Manufacturing	FoF	680448	01/09/2015	31/08/2018	7.143.300 (7.143.300)	STIFTELSEN SINTEF	NO
Modulase -Development and Pilot Line Validation of a Modular re-configurable Laser Process Head	FoF	723945	01/09/2016	31/08/2019	2.458.465 (2184565)	TWI LIMITED	UK
DREAM -Driving up Reliability and Efficiency of Additive Manufacturing	FoF	723699	01/10/2016	30/09/2019	3.242.435 (3.242.435)	CONSORZIO INTERUNIVERSITARIO NAZIONALE PER LA SCIENZA E TECNOLOGIA DEI MATERIALI	IT
MAESTRO -Modular laser based additive manufacturing platform for large scale industrial applications	FoF	723826	01/10/2016	30/09/2019	3.995.905 (3.995.905)	CENTRE TECHNIQUE INDUSTRIEL DE LA PLASTURGIE ET DES COMPOSITES	FR
PARADDISE -A Productive, Affordable and Reliable solution for large scale manufacturing of metallic components by combining laser-based ADDItive and Subtractive processes with high Efficiency	FoF	723440	01/10/2016	30/09/2019	3.761.402,50 (3.761.402,50)	FUNDACION TECNALIA RESEARCH & INNOVATION	ES
HIPERLAM-High Performance Laser-based Additive Manufacturing	FoF	723879	01/11/2016	31/10/2019	3.756.256,25 (3.756.256,25)	ORBOTECH LTD	IL
Combilaser -COMbination of non-contact, high speed monitoring and non- destructive techniques applicable to LASER Based Manufacturing through a self- learning system	FoF	636902	01/01/2015	31/12/2017	3.439.420 (3.439.420)	HIDRIA AET d.o.o. Slovenia	SL
ENCOMPASS-ENgineering COMPASS	FoF	723833	01/01/2016	31/12/2019	4.040.371 (4.040.371)	THE MANUFACTURING TECHNOLOGY CENTRE LIMITED LBG	UK
DiDIY-Digital Do It Yourself	ICT	644344	01/01/2015	30/06/2017	2.081.767,50 (2.081.767,50)	UNIVERSITA' CARLO CATTANEO - LIUC	IT
SARAFun-Smart Assembly Robot with Advanced FUNctionalities	ICT	644938	01/03/2015	28/02/2018	4.037.266,25 (4.037.266,2)	ABB AB	SE

FP7-TRANSPORT: 2 projects

Acronym-Project full title	ID	Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
RepAIR -Future RepAIR and Maintenance for Aerospace industry	605779	01/06/2013	31/05/2016	5.979.564,01 (4276277)	UNIVERSITAET PADERBORN	DE
MERLIN- Development of Aero Engine Component Manufacture using Laser Additive Manufacturing	266271	01/01/2011	31/12/2014	7 062 175,83 (4.886.561)	ROLLS ROYCE PLC	UK

H2020-Societal challenge-TRANSPORT: 3 projects

Acronym-Project full title	ID	Startingdate	End date	Total project budget (€) (EU contribution)	Coordinator	Country
AMOS -Additive Manufacturing Optimization and Simulation Platform for repairing and remanufacturing of aerospace components	690608	01/02/2016	31/01/2020	1.396.188,75 (1.396.188,75)	THE UNIVERSITY OF SHEFFIELD	UK
Bionic Aircraft -Increasing resource efficiency of aviation through implementation of ALM technology and bionic design in all stages of an aircraft life cycle	690689	01/09/2016	31/08/2019	7.968.812 (6.441.062)	LZN LASER ZENTRUM NORD GMBH	DE
EMUSIC -Efficient Manufacturing for Aerospace Components USing Additive Manufacturing, Net Shape HIP and Investment Casting	690725	01/04/2016	31/03/2019	2.193.278,75 (1.799.993,75)	THE UNIVERSITY OF BIRMINGHAM	UK

FP7-SME: 8 projects

Acronym-Project full title	ID	Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
FastEBM -High Productivity Electron Beam Melting Additive Manufacturing Development for the Part Production Systems Market	729290	01/12/2011	30/11/2013	1.488.264,83	ARCAM AB; TLS TECHNIK GMBH & CO. SPEZIALPULVER KG	DE
HiResEBM-High resolution electron beam melting	286695	01/10/2011	30/09/2015	1.404.732	ARCAM AB	DE
Implant Direct	286762	01/09/2012	31/08/2014	1.497.312,73	TWI LIMITED	UK
INT RAPID -Innovative inspection techniques for laser powder deposition quality control	286577	01/09/2011	31/08/2013	1.442.306,40	TWI LIMITED	UK
KARMA-Knowledge Based Process planning and Design for Additive Layer Manufacturing	283833	01/07/2010	30/06/2013	2.040.417,21	FEMEVAL	ES
Ownerchip-Digital Rights Management Infrastructure For 3D Printed Artifacts	243631	01/10/2014	31/03/2015	71.429	THINGS3D LIMITED	UK
PP-MIPS -An innovative phosphorus rich intumescent oligomer enabling commercially competitive high performance halogen free fire protection of polypropylene	651604	01/11/2010	31/10/2012	1.490.231,80	Advanced Insulation Systems Ltd	UK
TIALCHARGER -Titanium Aluminide Turbochargers – Improved Fuel Economy, Reduced Emissions	262308	01/02/2013	30/06/2015	1.548.216,28	TWI LIMITED	UK

H2020-SME: 1 project

Acronym-Project full title		Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
3DT Tool -Next Generation of Cutting Tools Using Additive Manufacturing Technology I, Phase 1	729290	01/06/2016	30/09/2016	71.429 (50.000)	DANSKE VAERKTOEJ APS	DK

FP7-ERC: 4 projects

Acronym-Project full title	ID	Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
CombiPatterning -Combinatorial Patterning of Particles for High Density Peptide Arrays	277863	01/11/2011	31/10/2016	1.494.600	KARLSRUHER INSTITUT FUER TECHNOLOGIE	DE
CopyMe3D: High-Resolution 3D Copying and Printing of Objects	632200	01/09/2014	31/08/2015	1,66166 357,20	TECHNISCHE UNIVERSITAET MUENCHEN	DE
M&M's: New Paradigms for MEMS & NEMS Integration	277879	01/11/2011	31/10/2017	1.495.982	KUNGLIGA TEKNISKA HOEGSKOLAN	SE
ShapeForge: By-Example Synthesis for Fabrication	307877	01/12/2012	30/11/2017	1.301.832	INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE DOMAINE DE VOLUCEAU ROCQUENCOURT	FR

H2020-ERC: 2 projects

Acronym-Project full title	ID	Starting date	End date	Total project budget (€) (EU contribution)	Coordinator	Country
3D2DPrint -3D Printing of Novel 2D Nanomaterials: Adding Advanced 2D Functionalities to Revolutionary Tailored 3D Manufacturing	681544	01/10/2016	30/09/2021	2.499.942	THE PROVOST, FELLOWS, FOUNDATION SCHOLARS THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN	IE
BIO-ORIGAMI-Meta-biomaterials: 3D printing meets Origami	677575	01/02/2016	31/01/2021	1.499.600	TECHNISCHE UNIVERSITEIT DELFT	NL

FP7-JTI: 7 projects

Acronym-Project full title	ID	Starting date	End date	Total project budget (€) (funding)	Coordinator	Country
AEROBEAM- Direct Manufacturing of stator vanes through electron beam melting	323476	01/10/2012	30/09/2013	134.601,30 (100.950,98)	ASOCIACION DE INVESTIGACION DE LAS INDUSTRIAS METALMECANICAS, AFINES Y CONEXAS	ES
AeroSim- Development of a Selective Laser Melting (SLM) Simulation tool for Aero Engine	287087	01/05/2012	31/07/2015	966.476,40 (700.290)	TECHNISCHE UNIVERSITAET MUENCHEN	DE
ASLAM- Advanced materials for lean burn combustion tiles using laser-Additive Layer Manufacturing (L-ALM)		01/10/2013	31/08/2016	995 398 (745.619)	MATERIALS SOLUTIONS LIMITED	UK
Hi-StA-Part- High Strength Aluminium Alloy parts by Selective Laser Melting	325931	01/02/2013	31/03/2015	120.646,52 (89.711)	TWI LIMITED	UK
MALT - Multilaser Additive Layer Manufacturing of Tiles	336560	01/06/2013	31/12/2016	2.399.662,79 (1.319.664,6)	MATERIALS SOLUTIONS LIMITED	UK
SIMCHAIN- Development of physically based simulation chain for microstructure evolution and resulting mechanical properties focused on additive manufacturing processes	326020	01/07/2013	31/08/2016	946.471,40 (616.305)	UNIVERSITAET BAYREUTH	DE
TIFAN- Manufacturing by SLM of Titanium FAN wheel. Comparison with a conventional manufacturing process		01/10/2013	31/03/2015	199.989,20 (142.000)	LORTEK S. COOP	ES

H2020-JTI: 4 projects

Acronym-Project full title	ID	Starting date	End date	Total project budget (€) (funding)	Coordinator	Country
BARBARA- Biopolymers with advanced functionalities for building and automotive parts processed through additive manufacturing	745578	01/05/2017	30/04/2020	2.711.375 (2.603.861,25)	FUNDACION AITIIP	ES
Ascent AM- Adding Simulation to the Corporate ENvironmenT for Additive Manufacturing	714246	01/08/2016	31/07/2019	699.375 (699.375)	TECHNISCHE UNIVERSITAET MUENCHEN	DE
DISTRACTION- Design against DISTortion of metallic aerospace parts based or combination of numeRical modelling ACTivities and topology optimisatION		04/01/2016	03/01/2019	449.420 (449.420)	LORTEK S. COOP	ES
ALFORAMA -Innovative AI alloy For aircraft structural parts using Additive MAnufacturing technology	755610	01/07/2017	30/06/2020	598.447,50 (598.447,50)	LORTEK S. COOP	ES

ERASMUS+: 4 projects

Acronym-Project full title	ID	Starting date	End date	Total project budget (€) (funding)	Coordinator	Country
3DPRISM -3DPRinting Skills for Manufacturing		2014	2018	337.350	University of Sheffield	UK
METALS-MachinE Tool ALliance for Skills		2015	2018	858.080	CECIMO	BE
ADMIRE-Knowlede Alliance for Additive Manufacturing between industry and universities		01/01/2017	31/12/2019	998.035,00	CRANFIELD UNIVERSITY	UK
CLAIMM-Creating knowLedge and skilLs in AddItive Manufacturing		01/01/2018	31/12/2020	997.488 (997.448)	CESOL	ES

INTERREG: 4 projects

Acronym-Project full title	ID	Starting date	End date	Total project budget (€) (funding)	Coordinator	Country
SAMT-SUDOE- Spread of AM and advanced materials technologies for the promotion of KET industrial Technologies in plastic processors and mould industries within sudoe space		27/09/2016	30/06/2019	994.827	AIJU	SPAIN
ADDISPACE- Selection of aerospace components for improving Metal Additive Manufacturing technologies		01/07/2016	30/06/2019	1.774.450,69	ESTIA	FRANCE
TRANSFRONT 3D		01/06/2016	01/06/2019	1.649.649 (1.025.525)	TECNALIA	SPAIN
COMPETITIV'eko					Nouvelle Aquitanio Comerce Chamber	FRANCE

ANNEX B: List of Regional AM Related Projects

N.B. Project highlighted in yellow are actually labs/centres/facilities built thanks to national/regional fundings.

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
1	Austria		AM 4 Industry	Quality assurance and cost models supporting the wide spread use of additive manufacturing		01/11/2016	ECO plus								x	x
2	Austria		HiPA²l	High Performance Additive Manufacturing of Aluminium alloys	National agencies	01/06/2017	LKR Leichtmetallkompetenzze ntrum Ranshofen GmbH (Austria)								x	x
3	Austria		NextGen3D	Next Generation 3D- Printing: Material and process development for the industry- strength application	FFG	01/04/2015	Profactor								x	
4	Belgium		FATAM	Fatigue of Additive Manufactured components – Relating AM process conditions to long- term dynamic performance of metallic AM parts	SIM & VLAIO	01/05/2017	Siemens Industry Software NV								x	
5	Belgium		HyLa Form	Hybrid laser-based additive & subtractive research platform		2017	VUB	x	x			x	x	x		
6	Belgium	Walloni e	IAWATHA	InnovAtion en Wallonie par les TecHnologies Additives	FEDER and Wallonie and Operateurs publics	2016	Sirris	x	x	x		x	x	x		

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
7	Belgium		STREAM	STRuctural Engineering materials through Additive Manufacturing: 3D printing of structural materials by increasing the knowledge base about additive manufacturing of polymers and metals, with emphasis on the material properties.	SIM & VLAIO	01/12/2013	Materialise								x	
8	Czech Republic		3D Concept	V rámci projektu se otevírá specializované multifunkční centrum zaměřené na inovace v oblasti designu výrobků, vývoje nových produktů, výrobních postupů a dekorativního umění pomocí technologie 3D tisku.	OPERAČNÍ PROGRAM PRAHA – KONKURENCESCHOP NOST	01/04/2014	NAVIGA 4, sro								x	
9	Czech Republic		3D Concept – nový rozměr	V rámci projektu budou pořízeny nové technologie pro prezentaci modelů technologií "rozšířené reality" a tisk modelů s hladkým povrchem a vysokou mírou detailu.	OPERAČNÍ PROGRAM PRAHA – KONKURENCESCHOP NOST	01/06/2015	NAVIGA 4, sro								x	
10	Czech Republic		Ortho3D			01/07/2015	ProSpon, spol. s r.o.						x			
11	Czech Republic		Adaptivní parametrický CAD model ortézy horní		ERDF (European Regional Development Fund)	17/10/2016	Ortopedická protetika Frýdek-Místek, s.r.o.						x			

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
			končetiny zhotovené 3D tiskem													
12	Czech Republic		Implementace 3D tisku kovů a jeho využití u kovovýroby pro automotive		ERDF (European Regional Development Fund)	2017	LAKUM - AP, a.s.		x							
13	Denmark		3DIMS	3D Printing Integrated Manufacturing System	Innovation Fund Denmark	2016	AddiFab ApS			x			x	x		
14	Denmark		CartigenPro	3D printede implantater med nanoteknologi skal genskabe ødelagte led	Innovation Fund Denmark	2013	DAVINCI Development A / S						x			
15	Denmark		3D-print i nyt plastmateriale med grafen		Innovation Fund Denmark	2015	Aarhus University			x		x				
16	Denmark		ЗР	Personalised food Products for Patients	Innovation Fund Denmark	2018	The Danish Technological Institute						x			x
17	Finland		3D Boost and 3D Invest	The objective of the project is to form a remarkable hub of expertise in 3D printing techniques in Tampere Region.			Tampere University of Technology (TUT), Tampere University of Applied Sciences (TAMK) and Sastamala Municipal Education and Training Consortium (SASKY)								x	
18	Finland		HYBRAM	Industrialization of Hybrid and Additive Manufacturing – Implementation to Finnish industry		01-06-2016	Tampere University of Technology							x		x
19	Finland		Project Juniper	Large Scale Wood Printing	Business Finland	01/09/2017	3D Step				x					

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
20	Finland		Välkky	Vaativa digitaalinen valmistus ekosysteemin lisäarvon tuottajana	Pirkanmaan liitto	2016	VTT & Tampere University of Technology							x		x
21	France		3D Hybrid	Machine HYBRIDE d'impression 3D métal couplant fonctions additive (SLM) et soustractive (laser ultracourt)	Fonds Uniques Interministerial (FUI)		Manutech USD	x	x			x	x			
22	France		3DRX-online	Cathodes CNTs forts courants pour le contrôle RX 3D en ligne	ANR	01/10/2015	Thales Research & Technology							x		
23	France		3D-SLS	3D-numerical Simulation of the Laser Sintering processing of thermoplastic powders for the prediction of microstructural features and part warpage	ANR	01/10/2015	Institut National des Sciences Appliquées de Lyon - Laboratoire d'Ingénierie des Matériaux Polymères /National Institute of Applied Sciences of Lyon - Laboratoire d'Ingénierie							x		x
24	France		ACAPULCO	Développement d'outillages d'injection polymère avec la technologie DLP	Fonds unique interministériel (FUI)	10/01/2016	SMP							x		
25	France		ALMARIS	Architecturation Laser de MAtéRIaux Superélastiques	ANR	2016	ONERA PALAISEAU	x								
26	France	Rhône- Alpes	Almée	Aluminium Additive Layer Manufacturing pour Equipements Electroniques	Fonds Uniques Interministerial (FUI)		THALES	x		x						

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
27	France		ΑΤΟΜΙQ	Advanced Technologies fOr Millimeterwave Integrated filters in Q and V bands	ANR	01/01/2014	THALES ALENIA SPACE FRANCE	x								x
28	France		Bone printing	Laser-Assisted Bioprinting for bone tissue engineering	ANR	01/11/2010	INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE - DELEGATION DE BORDEAUX						x			x
29	France		CAPIT4L	Réalisation de caloducs en fabrication additive polymère avec développement de polymères conducteurs thermiques	Institute Carnot	01/01/2018	IPC	x		x						
30	France		CNRS3D/SATTSE between Nancy and Marseille	2 Photons 3D printing	SATT-SE and CNRS	2015	L. Gallais								x	x
31	France		CNRS4D between Nancy and Paris	Matière stimulable par fabrication additive	CNRS	2017	B. Roman								x	x
32	France		CNRS-I3DI between Marseille and Nancy	Impression 3D Instantanée	CNRS	2017	M. Zerrad								x	x
33	France	Rhône- Alpes	Dry to Fly	Eco-Fabrication 3D imbricative intelligente de pièces de grandes dimensions	INVESTISSEMENT D'AVENIR PSPC	01/01/2015	MECACHROME	x	x		x	x		x		
34	France		ELASTICITE	Titanium alloys elaboration with superelastic properties for cladding tests implants	ANR	01/03/2013	INSA de Strasbourg, LGeCO						x			x

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
35	France		FA2SCINAE	Additive Manufacturing and Fatigue of cellular structures integrated in aerospace	ANR	01/10/2015	SIMAP	x								x
36	France		FADIPLAST 2												1	
37	France		FAIR	(Fabrication additive pour intensification de réacteurs	(CGI) + BPI		Air Liquide & Poly- Shape								x	
38	France		FastPrinting	New Photosensitive Resins for Fast Printing	ANR	01/10/2015	Institut de Science des Matériaux de Mulhouse /Institute of Materials Science of Mulhouse							x		x
39	France		FollowKnee	Improve Follow-up of Knee surgery	ANR	02/2018	INSERM DR Grand-Ouest						x			
40	France	Rhône- Alpes	GPP MULTIMAT	Grand Projet Poudre Multimatériaux	Fonds Uniques Interministerial (FUI)	01/01/2007	CETIM	x	x				x			x
41	France		Grand Est Region 4D between Mulhouse, Nancy, Reims, Strasbourg	4D Printing	Instituts Carnot	2018	A Spangenberg and C. Frochot								x	x
42	France		GRMH2TANK	High-performance and lightweight Graphene- CFRP compressed Hydrogen storage tank for aerospace applications	ANR	01/12/2015	University of Kiel, Faculty of engineering, Institute for Material Science - Functional Nanomaterials	x								x
43	France		ILTO	Laser printing of organic thin film transistors	ANR	01/01/2012	CNRS DR Provence et Corse			x						

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
44	France	Rhône- Alpes	ltech Mould	Intégration de technologies innovantes pour le développement de moules optimisés thermiquement pour l'injection thermoplastique, la mise en forme des composites et la fonderie sous-pression	Fonds Uniques Interministerial (FUI)	01/01/2014	ARRK Shapers							x		
45	France		LEMCI	Laboratory of research and modeling for Printed Circuit Boards	ANR	01/03/2015	Laboratoire d'etude des microstructures et de mécanique des matériaux / Laboratory for the study of microstructures and materials mechanics			x						x
46	France		LIGNOPROG	Modelling progression of enzymes in lignocellulosic assemblies and plant cell walls	ANR	01/10/2014	UMR Fractionnement des Agroressources et Environnement				x					x
47	France		MACOY3D	Dielectric composite materials, with optimized microwave properties and prepared by 3D additive manufacturing	ANR	01/10/2015	Institut de Chimie de la Matière Condensée de Bordeaux /Institute of Chemistry of Condensed Matter of Bordeaux	x		x						x

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
48	France		MATERIAL	Micro-geometry Approach of Texture Reproduction for Artistic Legacy	ANR	01/10/2015	Institut National de Recherche en Informatique et en Automatique /National Institute for Research in Computer Science and Control			x						
49	France		MELTED	Amélioration de la tenue en fatigue d'empreintes de moule réalisées en fabrication additive métal	Institute Carnot	01/01/2017	LaMCoS							x		
50	France		MMLED	Modélisation multi échelle et étude expérimentale de l'endommagement dans les matériaux composites architectures obtenus par fabrication additive	ANR	2017	MSME Laboratoire Modélisation et Simulation Multi Echelle								x	
51	France		MONARCHIES	Molds and cores architectured by sand 3D printing	ANR	01/12/2015	Laboratoire d'Ingénierie et Sciences des matériaux - URCA /Laboratory of Engineering and Materials Science							x		x
52	France		MOSART	Processing of architectured structures for transpiration cooling	ANR	01/10/2014	Office National des Etudes et de Recherches Aérospatiales	x								x
53	France	Rhône- Alpes	Mouilinnov	Développement de MOULes INNOVants à hautes performances pour l'injection de matières plastiques	Fonds Uniques Interministerial (FUI)	01/01/2013	SCHNEIDER Electric							x		

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
54	France		NextBone	Bone of Tomorrow	ANR	01/10/2015	Groupe d'Etudes sur le Remodelage Osseux et les bioMatériaux / Study Group on Bone Remodeling and BioMaterials						x			x
55	France		OrthoFLase	Manufacturing of tricalcium phosphate bone tissue engineered orthopedic implants by selective laser sintering	ANR	01/01/2012	OSSEOMATRIX						x			x
56	France		PAM-PROD		PIA3	04/2018	APERAM							х		
57	France		SISCob	Safety Intelligent Sensor for Cobot	ANR	01/10/2014	PPRIME - Université de Poitiers /Poitiers university							x		x
58	France		SOFIA	"Solutions pour la Fabrication Industrielle Additive métallique"	Auvergne-Rhône- Alpes region	2016	Fives Michelin Additive Solutions								x	x
59	Germany		3DHartstoffdruck	Generative Fertigung hochbeanspruchter, dünnwandiger, komplexer Strukturelemente mittels Kurzlichtbogenverfahr en und Fülldraht	BMBF-Förderung	01/05/2016	GEFERTEC GmbH				x			x		
60	Germany		ASM	Additive Sandwich Manufacturing: Innovative Prozesskette zur Herstellung faserverstärkter Funktionsbauteile auf	BMBF-Förderung	01/10/2106	EEW-PROTEC GmbH					x		x		

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
				Basis von Sandwichstrukturen mittels additiver Fertigung												
61	Germany		3dsupply	3Dprint-Supply Services	BMBF-Förderung	01/09/2017	FIR e. V. an der RWTH Aachen								x	x
62	Germany		3DMetalWire	Entwicklung einer Produktionstechnologi e zum drahtbasierten 3D-Drucken von Metallbauteilen	BMBF-Förderung	01/06/2017			x					x		
63	Germany		AMPECS	Entwicklung eines neuen additiven Herstellungsverfahren s für 3D gedruckte Elektronik auf keramischen Substraten	BMBF-Förderung	01/06/2017	Neotech AMT GmbH			x						x
64	Germany		COMMANDD	Rechnerunterstützte Entwicklung und Fertigung dentaler Produkte	BMBF-Förderung	01/03/2012	Datron AG - Technology Center						x			
65	Germany		ConPAM	Entwicklung eines flexiblen und skalierbaren Systems zur Aufbereitung metallischer Pulver für additive Fertigungsprozesse	BMBF-Förderung	01/07/2017	Technische Universität Chemnitz								x	

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
66	Germany		HiPerLS	Ressourceneffizientes und reproduzierbares Hochleistungs-Laser- Sintern zur Herstellung von Kunststoffbauteilen	BMBF-Förderung	01/08/2014	EOS GmbH Electro Optical Systems	x	x				x	x		
67	Germany		PROGEN	Hochproduktive generative Produktherstellung durch laserbasiertes hybrides Fertigungskonzept	BMBF-Förderung	01/08/2014	robot-machining GmbH	x				x	x			
68	Germany		AGENT 3D	Additiv-Generative Fertigung - Die 3D- Revolution zur Produktherstellung im Digitalzeitalter (*14 more projects running under the program "Agent3-D will be added in the final roadmap)	BMBF-Förderung		Fraunhofer-Institut								x	
69	Germany		AGENT-3D elF	Additive Manufacturing Technologies for Integration of Electronic Functionalities	BMBF-Förderung		Fraunhofer-Institut	x	x	x		x	x	x		
70	Germany		SmartStream	Intelligente Bearbeitung durch die Verwendung schaltbarer Fluide	BMBF-Förderung	01/08/2014	Fraunhofer-Institut	x	x					x		
71	Germany		HyAdd3D	Hybrides Verfahren für die additive Multimaterialbearbeit ung von individualisierten	BMBF-Förderung	01/02/2017	Uwe Brick BURMS - Rapid Manufacturing Solutions	x	x	x		x	x	x		

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
				Produkten mit hoher Auflösung												
72	Germany		HybriDentCT	Hochgenaue 3D- Digitalisierung und Qualitätsprüfung im Dentalbereich zur Produktion von komplexem Zahnersatz	BMBF-Förderung	01/04/2014	Hugo Rost & Co. GmbH						x			
73	Germany		InSensa	In-Prozess Sensorik und adaptive Regelungssysteme für die additive Fertigung	BMBF-Förderung	01/05/2017	Materialise GmbH								x	
74	Germany		MultiMat3D	Additive Fertigung von Multimaterial- Hybridbauteilen	BMBF-Förderung	01/10/2016	VIA electronic GmbH								x	
75	Germany		AM-OPTICS	Additive Fertigung optischer Hochleistungskompon enten	BMBF-Förderung	01/02/2017	ARGES GmbH	x						x		
76	Germany		OptiAMix	Mehrzieloptimierte und durchgängig automatisierte Bauteilentwicklung für additive Fertigungsverfahren im Produktentstehungspr ozess	BMBF-Förderung	01/01/2017	Krause DiMaTec GmbH							x		
77	Germany		BadgeB	Betriebsfestigkeit additiv gefertigter Bauteile	BMBF-Förderung	01/04/2017	Fraunhofer-Institut	x	x		x	x				

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. & 	All	Non-tech
78	Germany		KitkAdd	Kombination und Integration etablierter Technologien mit additiven Fertigungsverfahren in einer Prozesskette	BMBF-Förderung	01/01/2017	Siemens AG	x				x				x
79	Germany		MYTHOS	Multimateriale hybride Technologie für die addtive Herstellung in dentalen Prozessketten	BMBF-Förderung	01/01/2017	imes-icore GmbH						x			
80	Germany		IndiPro	Bauteilindividuelle Prozesssteuerung und -überwachung zur anforderungsgerechte n additiven Massenfertigung	BMBF-Förderung	01/11/2016	EOS GmbH Electro Optical Systems	x	x	x				x		
81	Germany		ProLMD	Prozess- und Systemtechnik zur HybridFertigung großer Bauteile mit dem Laser Metal Deposition (LMD) Verfahren	BMBF-Förderung	01/01/2017	KUKA Industries GmbH & Co. KG	x	x					x		
82	Germany		StaVari	Additive Fertigungsprozesse für komplexe Produkte in variantenreicher und hochfunktionaler Stahlbauweis	BMBF-Förderung	01/10/2016	EDAG Engineering GmbH	x	x		x	x		x		

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
83	Germany		CustoMat 3D	Maßgeschneiderte LAM- Aluminiumwerkstoffe für hochfunktionale, variantenreiche Strukturbauteile in der Automobilindustrie	BMBF-Förderung	01/02/2017	EDAG Engineering GmbH		x							
84	Germany		FLATISA	Flammgeschützte, temperaturbeständige Thermoplaste für den industriellen Serieneinsatz von Additiven Fertigungsverfahren	BMBF-Förderung	08/05/2017	Airbus Operations GmbH	x				x				
85	Germany		HY2PRINT	Generative Herstellung von Implantaten mit Hybridstrukturen für den Schädelbereich	BMBF-Förderung	01/04/2017	Stryker Leibinger GmbH & Co. KG						x			
86	Germany		LextrA	Laserbasierte additive Fertigung von Bauteilen für extreme Anforderungen aus innovativen intermetallischen Werkstoffen	BMBF-Förderung	01/02/2017	Siemens AG	x				x				
87	Germany		MuSiK	Multimaterialdruck von C/Si/SiC- Keramiken	BMBF-Förderung	01/05/2017	Schunk Kohlenstofftechnik GmbH	x						x		
88	Germany		NextTiAl	Maßgeschneiderte TiAl-Legierungen für die additive Fertigung mittels Elektronenstrahlschm elzen	BMBF-Förderung	01/02/2017	MTU Aero Engines AG	x								

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
89	Germany		3DCRIMP	Additive Fertigungsprozesse für Crimpwerkzeuge	BMBF-Förderung	01/12/2016	WEZAG Gesellschaft mit beschränkter Haftung Werkzeugfabrik							x		
90	Ireland			Creating a 3D Manufacturing facility in the southeast that will provide: Advanced manufacturing training to industry employees, AM exposure to undergraduate students, develop standards for additive manufacturing, and provide product development support.	Regional Enterprise Development Fund		Three-D (Design Develop Disseminate) DAC								x	x
91	Italy		ULTRAHIGH TEMPERATURE CERAMIC MATRIX COMPOSITES BY ADDITIVE MANUFACTURING USING POLYMER PRECURSORS		Ministry of Abroad Affair "La Farnesina"	01/01/2016	ISTEC	x				x				
92	Italy		HIGH PERFORMANCE MANUFACTURING		MIUR (Italian Ministry of University and Research)		MCM SpA, Vigolzone (PC) / Politecnico di Milano							x		
93	Italy		MADE4LO	Metal AdditivE for LOmbardy	Lombardy Region	01/06/2017	Tenova								x	
94	Italy	Lazio	MANUSPACE	Special components for aerospace applications by additive manufacturing and INVESTMENT CASTING	Lazio Region	01/09/2015	Consorzio Matris (La Sapienza, Roma 3, Università Tor vercata, Centro Sviluppo Materiale)	x								

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
95	Italy	Trentin o	PRO-M Facility (AM Prototyping)		FESR and Trentino Region	2017	Trentino Region		x	x				x		
96	Italy		SICO	Control System for Aeronautical and aero-derived engines	European Funds for Regional Development	01/05/2016	Avio Aero	x								
97	Italy	Liguria	Smart Manufacturing 2020		MIUR (Italian Ministry of University and Research)		Siemens SpA, Genova Politecnico di Milano		x	x				x		
98	Italy	Piemon te	STAMP	Sviluppo Tecnologico dell'Additive Manufacturing in Piemonte	POR Piemonte	01/10/2016	Prima Industrie							x		
99	Netherla nds		3D Lab Radboudumc	3D imaging and Printing for MedTech		2017	Oost NL						x			
10 0	Netherla nds		3D Metal printing Biz2		TechForFuture	01/04/2018	Saxion								x	x
10 1	Netherla nds		3D&FPP	INTEGRATING 3D PRINTING AND FLEXIBLE POST- PROCESSING	European Regional Development Fund	01/07/2016	Rotterdam University of Applied Sciences								x	
10 2	Netherla nds		3DComp - Toepassen van thermoplastische composieten	Toepassen van thermoplastische composieten - naar aanleiding van het SIA RAAK MKB project 3DComp: 3D print technologie voor continu- vezelversterking in kunststof producten project		01/08/2016	Saxion Hogeschool, College van Bestuur	x	x					x		
10 3	Netherla nds		Brainport Industries Campus		NL-gov	01/01/2018	TNO	x					x	x		x
10 4	Netherla nds		CRANIOSAFE	Optimized and innovative materials and customized	NWO	09/01/2017	Universiteit van Amsterdam						x			x

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
				treatment strategies for cranioplasty												
10 5	Netherla nds		Field lab 3D MM - Multi-Material Additive Manufacturing		European Fund for Regional Development (EFRO)	2017	TNO			x			x	x		
10 6	Netherla nds		Fun-WAAM	Fundamentals of stress and temperature profiles during wire arc additive manufacturing	NWO	06/03/2017	Technische Universiteit Delft	x								
10 7	Netherla nds		K3D - 3D metalprinting for Industry			2017	Oost NL		x		x			x		
10 8	Netherla nds		Next UPPS	Integrated design methodology for Ultra Personalised Products and Services		01/01/2017	Technische Universiteit Delft Faculteit Industrieel Ontwerpen Design Engineering			x						
10 9	Netherla nds		OLL - Open Learning Labs		Regional	2016	Fontys								x	x
11 0	Netherla nds		ProTOcool	Control of porosity and surface roughness in topology optimized SLM conformal cooling systems	NWO	16/08/2017	Rijksuniversiteit Groningen	x	x			x		x		
11 1	Netherla nds		SINTAS	Sustainability Impact of New Technology on After sales Service supply chains	NWO	01/11/2014	Universiteit Twente								x	x

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
11 2	Netherla nds		SMART PRODUCTION	Develop novel processes, machines and materials for low volume productions	ERDF (European Regional Development Fund), the Ministry for Economic Affairs and Energy of the State North Rhine- Westphalia (MWEIMH NRW), the Dutch Ministry of Economic Affairs, and the provinces Gelderland and Overijssel	01/01/2017	Netzwerk Oberfläche NRW e.V.								×	
11 3	Netherla nds		TPC Future		RAAK-MKB subsidy, financed by Regieorgaan SIA, part of the Netherlands Organization for Scientific Research (NWO)	01/03/2017	Saxion Hogeschool, College van Bestuur	x	x					x		
11 4	Netherla nds			Functionally Graded Materials Through Wire Arc Additive Manufacturing	NWO	01/06/2017	Technische Universiteit Delft								x	
11 5	Netherla nds			Accelerating Mass Personalization in Orthopedics facilitated by Machine Learning and Bone MRI-based Digital Fabrication.	NWO	15/05/2017	Universiteit Utrecht						x			x

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
11 6	Netherla nds			Design voor 3D printing in de utiliteitssector	NWO	15/01/2018	Hogeschool van Amsterdam			x	x	x		x		
11 7	Netherla nds			Developing innovative materials for Additive Manufacturing and 4D printing	Netherlands Organisation for Scientific Research		Brightlands Materials Center								x	
11 8	Norway		3D-CAPS	Three Dimensional Printed Capture Materialsfor Productivity Step- Change	ERA-NET ACT program	01/08/2017	ECN								x	
11 9	Norway		AddForm	Additiv tilvirkning av forminnsatser for sprøytestøping av funksjonelle prototyper og små produktserier	Research council of Norway	01/10/2015	SINTEF AS							x		
12 0	Norway		AM Super Duplex	Laser-PBF of Super Duplex		01/08/2017									x	
12 1	Norway		HighEFF	National Research Centre for an Energy Efficient and Competitive Industry	Research Council of Norway	01/08/2016	SINTEF Energi								x	
12 2	Norway		IPN ESSpK	Extra big injection moulded components	Research council of Norway	01/03/2016									x	
12 3	Norway		IPN NewMan	New manufacturing route for Multi Port Extrusion dies	Reserach council of Norway	01/08/2016									x	
12 4	Norway		LAMINA	Leading Additive Manufacturing technology Into New Application	Basic funding to SINTEF	01/01/2017	SINTEF								x	
12 5	Norway		MKRAM	Material knowledge for robust additive manufacturing	Research council of Norway	01/01/2016	SINTEF AS								x	x

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
12 6	Norway		NESSIE	New structured substrates for downstream processing of complex biopharmaceuticals	M-era.Net and National funding agencies.	01/04/2017	SINTEF AS						x			
12 7	Norway		SFI Manufacturing	SFI Manufacturing: Sustainable Innovations for Automated Manufacturing of Multi-Material Products	Research council of Norway	01/08/2015	SINTEF Raufoss Manufacturing								x	
12 8	Norway		SIAM 3D	SINTEF's Initiative on Additive Manufacturing and 3D technology	Reserach council of Norway	01/06/2017	SINTEF	x	x	x	x	x		x		
12 9	Poland		AMgAvio	Magnesium-based alloys processed with SLM technology for aeronautical applications	Polish National Centre for research and Development (PNC R&D)	2017	PWr (Wroclaw University of Science and Technology)	x								
13 0	Poland		АМрНОга	Additive Manufacturing Processees and Hybrid Operations Research for Innovative Aircraft Technology Development	NCBIR	41609	PWr (Wroclaw University of Science and Technology)	x								
13 1	Poland		InnsLOT	Development of innovative additive manufacturing method for the production of complex thin-walled, nickel- based aircraft engine components	Polish National Centre for research and Development (PNC R&D)	2018	PWr (Wroclaw University of Science and Technology)	x								

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
13 2	Poland		ReCover	Layers and coatings with rhenium, its compounds and alloys properties, areas and methods of application	Polish National Centre for research and Development (PNC R&D)	2015	Nicolaus Copernicus University								x	
13 3	Poland		TiSPHERO	Manufacturing of spherical powders from scraps for special applications	KIC RawMaterials	01/10/2016	IMN								x	
13 4	Portugal		add.AM	Add Additive Manufacturing to Portuguese Industry	POCI FEDER	01/07/2017	ADIRA - METAL FORMING SOLUTIONS, S.A.	x	x		x			x		x
13 5	Portugal		ADDing	Multi-scale Modelling of ADDitive Manufacturing by Direct Energy Deposition of Metallic Powders.	POCI FEDER + FCT	26/07/2018	INEGI - INSTITUTO DE CIÊNCIA E INOVAÇÃO EM ENGENHARIA MECÂNICA E ENGENHARIA INDUSTRIAL (RTO)							x		x
13 6	Portugal		AddStrength	Enhanced mechanical proprieties in additive manufactured components.	POCI FEDER + FCT	27/07/2018	INEGI - INSTITUTO DE CIÊNCIA E INOVAÇÃO EM ENGENHARIA MECÂNICA E ENGENHARIA INDUSTRIAL (RTO)							x		x
13 7	Portugal		ADIMAQ	Fabrico ADItivo por extrusão e MAQuinagem para produção híbrida de modelos, moldes e moldações de grandes dimensões.	POCI FEDER	01/10/2015	CEI Zipor (SME)							x		x
13 8	Portugal		BIGPROTO	FABRICO AVANÇADO DE PROTÓTIPOS TÉCNICOS E GRANDE DIMENSÃO	хх	2010	CENTIMFE		x					x		x

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
13 9	Portugal		FIBR3D	Additive manufacturing based hybrid processes for long or continuous fiber reinforced polimeric matrix composites	POCI FEDER	01/09/2016	INEGI - INSTITUTO DE CIÊNCIA E INOVAÇÃO EM ENGENHARIA MECÂNICA E ENGENHARIA INDUSTRIAL (RTO)							x		
14 0	Portugal		FRF	FABRICO RÁPIDO DE FERRAMENTAS	хх	2002	CENTIMFE	x	x				x	x		x
14 1	Portugal		HIBRIDMOULDE	Desenvolvimento de Metodologias Alternativas de Projeto e Fabrico de Moldes Rápidos para Injeção de Termoplásticos de Engenharia	ροςτι	2003	CENTIMFE		x					x		x
14 2	Portugal		HIBRIDMOULDE 21	Desenvolvimento de uma solução de engenharia para peças plásticas de grandes dimensões em pequenas séries.	xx	2010	CENTIMFE		x					x		x
14 3	Portugal		MAMTool	Machinability of Additive Manufactured Parts for Tooling Industry	POCI FEDER + FCT	02/08/2018	INEGI - INSTITUTO DE CIÊNCIA E INOVAÇÃO EM ENGENHARIA MECÂNICA E ENGENHARIA INDUSTRIAL (RTO)							x		
14 4	Portugal		NEXT.parts	Next-Generation of Advanced Hybrid Parts	POCI FEDER	01/07/2016	3DTECH - PRODUÇÃO, OPTIMIZAÇÃO E REENGENHARIA LDA. (SME)						x	x		x
14 5	Portugal		PRODUTECH SIF	PRODUTECH SIF - Soluções para a Indústria de Futuro	POCI FEDER	01/05/2017	TEGOPI, S.A.	x	x	x				x		x

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
14 6	Portugal		RNPR	REDE NACIONAL DE PROTOTIPAGEM RÁPIDA	xx	1997	CENTIMFE	x	x				x	x		x
14 7	Portugal		ROBMOLDE	Development of Robotic Cell for Surface Regeneration System using Intelligent Reverse Engineering	ANI	01/10/2002	ISQ - Instituto de Soldadura e Qualidade (Portugal)							x		x
14 8	Portugal		SIRBLADE	Automated Repair of Turbine Blade for Aero Turbine Engine	ANI	01/06/2003	TAP - Transportes Aéreos Portugueses (Portugal)	x								
14 9	Portugal		SLMXL	Sistemas de fabricação aditiva de peças metálicas de grande dimensão	POCI FEDER	01/10/2015	ADIRA - METAL FORMING SOLUTIONS, S.A.							x		x
15 0	Portugal		TOOLING4G	Advanced Tools for Smart Manufacturing	POCI FEDER	01/07/2017	ANÍBAL H. ABRANTES - INDÚSTRIAS DE MOLDES E PLÁSTICOS S.A.							x		x
15 1	Serbia		3D Plus	Improving Value-chain of plastic product by AM	Serbian Development Agency	01/05/2017	University of Kragujevac - Faculty of Mechanical Engineering -Kraljevo							x		
15 2	Serbia		Digital Technologies for product development		GIZ	29/05/2018	University of Kragujevac - Faculty of Mechanical Engineering -Kraljevo							x		x
15 3	Serbia		IMPuls	Innovation Management for new Products	RSEDP2	09/03/2011	University of Kragujevac - Faculty of Mechanical Engineering -Kraljevo							x		

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. & 	All	Non-tech
15 4	Spain		3DCONS	Novel 3D printing technologies in the construction industry	CDTI (Spanish Centre for the Development of Industrial Technology)	01/11/2014	VIAS Y CONSTRUCCIONES				x					
15 5	Spain	Basque Region	ADDITIVE	New alloys and industrial components through additive manufacturing for strategic sectors	Gobierno Vasco	01/01/2016	LORTEK S. COOP	x	x				x			
15 6	Spain		ADVANSEAT	Development of a new concept of advanced, removable and electrified seat for motor vehicles, from new manufacturing processes more flexible, improving its safety performance and comfort	CDTI (Spanish Centre for the Development of Industrial Technology)	01/10/2015	GRUPO ANTOLIN		x							x
15 7	Spain	Aragon	AM INNOVA	ADDITIVE MANUFACTURING TECHNOLOGIES APPLYED TO PRODUCTS, MOULDS AND TOOLS IN AERONAUTICAL SECTOR	REGIONAL-Aragon	01/07/2015	CLUSTER AERONÁUTICO DE ARAGÓN - AERA	x								x
15 8	Spain	Asturias	AMFOOD	Research on new textures and formulations in order to develop new food types through additive manufacturing techniques	IDEPA (Institute for Economic Development of Principado de Asturias)	01/12/2015	CASA GERARDO						x			x

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
15 9	Spain	Asturias	AM-MEDICO	Research on biomedical adaptive design, topological optimization and development of new materials and processes for additive manufacturing, in order to generate high added-value custom- made solutions in the medical field.	FICYT (Foundation for promotion of applied research and technology in Asturias)	01/01/2016	Fundación PRODINTEC						x			x
16 0	Spain		BIO AM	Improvement of the biofunctionality of polymeric scaffolds made by additive manufacturing	MINECO	01/03/2018	Universidad de Las Palmas de Gran Canaria - ULPGC						x			
16 1	Spain		BUIL3D-PRINT	DEVELOPMENT OF An INTEGRAL PRODUCTIVE PROCESS FOR THE CONSTRUCTION INDUSTRY BASED ON AM TECHNOLOGIES	CDTI (Spanish Centre for the Development of Industrial Technology)	01/06/2015	CEMENTOS TUDELA VEGUIN				x			x		x
16 2	Spain		CON3D	Development of an automatized structure manufacturing process using 3D printing technologies for the construction sector	CDTI (Spanish Centre for the Development of Industrial Technology)	01/08/2013	COPROSA				x			x		x
16 3	Spain		ECLIPSE	Structures in composites and lightweight materials for simple assembly processes	CDTI (Spanish Centre for the Development of Industrial Technology)		EADS CASA								x	

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
16 4	Spain	Basque Region	FAMOLD	Additive manufacture of molds and inserts with new functionalities for processes of transformation of plastic and aluminum	Gobierno Vasco	03/05/2015	LORTEK S. COOP		x							
16 5	Spain		FRACTAL	Development of Spanish-Technology- Based Advanced Manufacturing and Prototyping Systems for Strategic Components via Laser Assisted Powder Sintering	CDTI (Spanish Centre for the Development of Industrial Technology)	06/02/2015	ETXE-TAR							x		
16 6	Spain		FUTURALVE	Materials and advanced manufacturing technologies for the new generation of high speed turbines	CDTI (Spanish Centre for the Development of Industrial Technology)	01/05/2015	ІТР	x								x
16 7	Spain		JAMES BONE	Juncture replacement through Additive Manufacturing & electro-spun scaffolds for human bones	MANUNET-IDEPA (Institute for Economic Development of Principado de Asturias)	01/12/2014	Cirugía Oral y Maxilofacial Dr. Llorente						x			x
16 8	Spain		KERAMIC	NOVEL PRODUCTS AND TECHNOLOGIES FOR ADVANCE PROCESSES OF ADDITIVE MANUFACTURING BASED ON CERAMIC COMPOSITIONS	NATIONAL	01/10/2015	TORRECID			x				x		x

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
16 9	Spain	Asturias	RECLAMA	Research on laser cladding solutions for turbine blades manufacturing processes	FICYT (Foundation for promotion of applied research and technology in Asturias)	01/01/2014	TALLERES ZITRON S.A.			x						x
17 0	Spain		SELENA	More electrical, safe and reconfigurable systems oriented to a more efficient airplane reducing the pilot load	CDTI (Spanish Centre for the Development of Industrial Technology)	01/09/2015	CESA	x								x
17 1	Spain		SILENCIO		CDTI (Spanish Centre for the Development of Industrial Technology)		EADS CASA	x								
17 2	Spain	Asturias	SLSAero	Research on SLS- based manufacturing processes to be applied in the aeronautics sector	IDEPA (Institute for Economic Development of Principado de Asturias)	01/11/2015	ACITURRI ADDITIVE MANUFACTURING	x								x
17 3	Spain	Asturias	SOLADI3D	Research on joining steel parts based on 3D printing and additive manufacturing technologies	IDEPA (Institute for Economic Development of Principado de Asturias)	05/05/2014	ArcelorMittal España, S.A.			x						x
17 4	Spain		SUPPORT	Improvement of osseointegration of Titanium porous structures by design optimization and surface modification with polymeric coatings	MINECO	01/01/2016	Universidad de Las Palmas de Gran Canaria - ULPGC						x			

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	AII	Non-tech
17 5	Spain			Implementation of wear-reduction micro textures through additive manufacturing technology over joint prosthesis featuring metal/plastic contact.	IDEPA (Institute for Economic Development of Principado de Asturias)	01/11/2017	MBA INCORPORADO; INGENIACITY	x								
17 6	Spain			Adaptation of DMLS 3D printing technology for knee prosthesis components	IDEPA (Institute for Economic Development of Principado de Asturias)	01/11/2016	SOCINSER 21 S.A.	x								
17 7	Sweden		3DTC	Characterization Of Additive Manufacturing Metal – Carbon-Fibre Composite Bond By Dual-Energy Computed Tomography	EURF	Jan 2016	Alfred Nobel Science Park (ANSP)							x		x
17 8	Sweden		AT-LAB	Regional additive manufacturing laboratory at Karlstad University	EURF	Jan 18 tbc	KARLSTAD UNIVERSITY								x	
17 9	Sweden		CAM2	Centre for Additive Manufacture - Metal	VINNOVA - Swedish Innovation Agency	2017	Chalmers University								x	
18 0	Sweden		DiLAM	Additive manufacturing of large components Etablering av en fysisk och virtuell test- och demonstrationsanlägg ning för additiv tillverkning av storskaliga komponenter.	Vinnova		SWEREA							x		x

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
18 1	Sweden		DISAM	Digitalization of Supply Chain in Swedish Additive Manufacturing	Vinnova	2017-11-06	SWEREA							x		x
18 2	Sweden		LIGHTCAM	Light Weight Solutions for High-Performance Components by Additive Manufacturing	Vinnova	2015-12-01	SWEREA	x								x
18 3	Sweden		Miljo:FIA	Demonstration environment for flexible and innovative automation (Demonstrationsmiljö för flexibel och innovativ automation, Miljo:FIA)	EU, Region Vaestra Gotaland, Swedish Agency for Economic and Regional Growth	01/02/2017	University West							x		
18 4	Sweden		RAMp-UP	Swedish Roadmap for Industrialization of Metal Additive Manufacturing	VINNOVA - Swedish Innovation Agency	01/10/2016	SWEREA								x	x
18 5	Sweden		RecAM	Recycling study of AM metal powder	Vinnova	2016-08-31	SWEREA							x		x
18 6	Sweden		REPLAB	Reparation och återanvändning av metallprodukter genom additiv tillverkning	EU&VGR	2018-01-01	University West								x	
18 7	Sweden		SAMw	Synergy for Additive Manufacturing using laser beam heat source and wire	The Knowledge Foundation	01/11/2017	University West	x						x		x
18 8	Sweden		SUMAN	Sustainable MANufacturing	The Knowledge Foundation	01/03/2011	University West	x	x			x	x	x		x
18 9	Sweden		SUMANnext	Sustainable MANufacturing through Next-	The Knowledge Foundation	01/01/2017	University West	x	x			x	x	x		x

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
				generation additive processes												
19 0	Sweden		Tolls for AM - SENAI	Tools and methods for certification of AM fabricated parts for aerospace applications	Vinnova/SENAI	2018-11-01	SWEREA	x								x
19 1	Sweden		VR rölam	Region Värmland - Region Örebro - AM initiative		10/07/1905	ANSP	x	x					x		x
19 2	UK		3D Fashion: Closures and trims		Innovate UK		Biov8tion Ltd			x						
19 3	UK		3D Screen Printing		Innovate UK	01/07/2017	Cadscan Limited							x		
19 4	UK	North West	ALF	Additive Layer Flexomer Manufacturing	Innovate UK	01/02/2017	Nottingham Trent University							x		
19 5	UK	South East	AMSURFIN	Additive Manufacturing SURface FINishing - An automated intelligent solution for polymer parts	Innovate UK	01/01/2017	Additive Manufacturing Technologies Ltd							x		
19 6	UK	London	САМ	Carbon Additive Manufacture	Innovate UK	01/10/2017	London Forest Products Limited						x			
19 7	υк	East of England	CAMBER	Concrete Additive Manufacturing for the Built Environment using Robotics	Innovate UK	01/03/2017	Skanska Technology Limited				x					
19 8	UK	South East	CHARM	Additive Manufacturing for Cooled High- Temperature Automotive Radial Machinery	Innovate UK	01/04/2016	Hieta Technologies Ltd		x							

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
19 9	UK		DIGI-TOOL		Innovate UK	01/03/2018	Toolroom Technology Limited							x		
20 0	UK		DRAMA	Digital Reconfigurable Additive Manufacturing facilities for Aerospace	Aerospace Technology Institute (ATI)	November 2017	Manufacturing Technology Centre (MTC)	x								
20 1	UK		FLEXIFINISH	FLEXIBLE AND AUTOMATED FINISHING AND POST- PROCESSING CELL FOR HIGH VALUE AM COMPONENTS	Innovate UK	01/06/2016	Toolroom Technology Limited								x	
20 2	UK		Gravity Sketch - Intuitive 3D Creation		Innovate UK	01/08/2015	Gravity Sketch Limited							x		
20 3	υк		HERMIT	High Efficiency Recuperator for stationary power Micro-Turbine	Innovate UK	01/05/2016	Hieta Technologies Ltd					x				
20 4	UK		IMPULSE	Improving Additive Manufactured Metal Parts Using Laser Surface Finishing and Electrochemical Machining	Innovate UK	01/10/2013	Ecm Developments Limited								x	
20 5	UK		MEGCAP	More Electric Generation, Controls & Aircraft Power	Innovate UK	01/06/2017	Safran Power UK Ltd.	x								
20 6	UK		Newcastle University and DePuy International Limited	To develop design rules and quality assessment procedures for solid and porous titanium alloy medical implants made using additive manufacture techniques	Innovate UK	01/12/2016	Newcastle University						x			

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
20 7	UK		PlasMan	High integrity manufacture	Innovate UK	01/07/2017	Aquasium Technology Limited		x					x		
20 8	UK		PowderCleanse	Automated powder recycling and quality assurance for enhanced additive manufacturing material reuse	Innovate UK	01/04/2017	L.P.W. Technology Limited							x		
20 9	UK		ProAMP	Production Capable Additive Manufacturing of Polymers	Innovate UK	01/10/2017	Euriscus Limited			x						
21 0	UK	London	PROMENADE	Plasma Removal of Methane from Natural Gas Dual-Fuel Engines	Innovate UK	01/09/2016	Johnson Matthey Plc		x							
21 1	UK	North West	RAD-AMP	Rapid Development of Additive Manufacturing Powder	Innovate UK	01/12/2017	L.P.W. Technology Limited								x	
21 2	UK	Yorkshir e and the Humber	RAMP-UP	Reliable Additive Manufacturing technology offering higher ProdUctvity and Performance	Innovate UK	01/05/2016	Reliance Precision Limited	x								
21 3	UK		RoboWAAM	Robotic Wire + Arc Additive Manufacture cell	Innovate UK	01/04/2018	Kuka Robotics UK Ltd							x		x
21 4	υк	North West	SEAM	Surface Engineering of Additive Manufactured Components	Innovate UK	01/10/2016	Wallwork Heat Treatment Limited	x	x				x	x		
21 5	υк	South East	SEAMLESS	Digitally-Enabled, Automated Post- Processing for AM	Innovate UK	01/05/2017	Toolroom Technology Limited							x		
21 6	UK	South East	SHAPE	Self-Healing Alloys for Precsion Engineering	Innovate UK	01/09/2015	Ilika Technologies Ltd								x	

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
21 7	UK	South West	START	Subtractive Technologies for Additively Realised Test-parts Manufactured Parts	Innovate UK	01/06/2017	Scorpion Tooling UK Limited	x					x	x		
21 8	ик	South East	TACDAM	Tailorable and Adaptive Connected Digital Additive Manufacturing	Innovate UK	01/01/2017	Hieta Technologies Ltd		x							
21 9	UK		The University of Sheffield and LPW Technology Limited	To devise a methodology for efficient development of high performance bespoke alloys to serve the rapidly growing metallic Additive Manufacturing market and understand effects of alloy compositional manipulation on AM processability.	Innovate UK	01/04/2016	University of Sheffield								x	
22 0	UK		University of Sheffield and Tripal Ltd	To identify and implement optimal processes and material for use in the manufacture of footwear using Additive Manufacturing technology	Innovate UK	01/10/2017	University of Sheffield			x						x
22 1	UK	South West	WINDY	WIng DesigN methodologY validation	Innovate UK	01/05/2016	Airbus Operations Limited	x								x

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	All	Non-tech
22 2	UK	Wales		Development Improvements in atomising nickel, cobalt & iron based alloys for use in AM	Innovate UK	01/07/2017	LSN Diffusion Limited	x	x				x			
22 3	UK	North West		Metal AM Process Informatics for Improved Surface Finish of Complex Parts	Innovate UK	01/08/2017	Croft Additive Manufacturing Ltd							x		
22 4	UK	West Midlan ds		Development and commercialization of 3D-printed ceramic/refractory carbonized items.	Innovate UK	01/05/2017	Shakespeare Foundry Limited	x		x		x		x		
22 5	UK	East of England		Unravelling &addressing orthopaedics & prosthetics problems by human-centred design	Innovate UK	01/08/2017	Innovative Technology and Science Limited						x			
22 6	UK	East of England		Wire Arc Additive manufacturing of near net shapes for Spacecraft propellant tanks	Innovate UK	01/10/2015	Airbus Defence And Space Limited	x		x						
22 7	UK	North West		High temperature, affordable polymer composites for AM aerospace applications	Innovate UK	01/02/2016	Victrex Manufacturing Limited	x								
22 8	UK	South East		Advanced Inverted Brayton Cycle exhaust heat recovery with Steam Generation	Innovate UK	01/02/2016	Hieta Technologies Ltd	x				x				
22 9	υк	London		A 3D printing solution to solve parents pain with orthotics services	Innovate UK	01/04/2016	Project Andiamo Ltd						x			

N	Country	Region (If availabl e)	Project Acronym	Project full title	Funding entity	Starting date (DD/MM/YY YY)	Coordinator	Aerospace	Automotive	Consumers &	Construction	Energy	Health	Industrial Eq. &	AII	Non-tech
23 0	UK			Prototype Development of a Hybrid Gas and Ultrasonic Powder Delivery System	Innovate UK	01/01/2016	Advanced Laser Technology Limited							x		

ANNEX D: List of Enablers

Legend:

<u>Sectors:</u> H=health; AE=aerospace; AU=automotive, CG=consumer goods; E=electronics, EN=energy; E&T= Industrial equipment &tooling; C= construction; O=other

<u>VC segments</u>: M&S=modelling and simulation; D=design; M=materials; P=process; PP=post-processing; Pr=product; EL=end of life

Process: PBF=Powder Bed Fusion; VP=Vat Photopolymerization; MJ=Material Jetting; ME=Material Extrusion; SL=Sheet Lamination; DED=Direct Energy Deposition; BJ=Binder Jetting; O=Other

<u>Non technology activities</u>: STD=standardisation; L=legislation; EDU=education/training; IE=business, commercialisation, industrial exploitation; IPR=intellectual property rights; TT=technology transfer

NAME	SUPPLY CHAIN	WEBSITE	COUNTRY/ Region	Sectors	VC segments	AM process es	AM Materia Is	Non Tech.
			R	TOs		•		
Aalto University Digital Design laboratory	R&D, design, end user	www.aalto.fi	FINLAND/Helsinki- Uusimaa-Etelä- Suomi	ALL	ALL	ALL	ALL	STD; L, EDU; IE; IPRS, TT
ACAM	R&D Materials; Design	http://acam.rwt h-campus.com/	GERMANY/ Aachen	ALL	ALL	-	Metal, polymer	STD, L, EDU, IE, IPR, TT
AIDIMME	R&D, design,	www.aidimme. es	SPAIN/ Comunidad Valenciana	ALL	ALL	PBF, VP, MJ, ME	Metal, Polymer, O: wood, natural materials	STD; EDU; IE; IPRS, TT
AIMPLAS	R&D service Bureau; design	www.aimplas.n et	SPAIN/ Comunidad Valenciana	ALL	M; P; PP; Pr, EL	ME	Polymer, food, bio- materials	STD; L; EDU; TT
AITIIP	R&D service Bureau; Materials provider; design	www.aitiip.com	SPAIN/ Aragon	ALL	ALL	PBF; VP; ME;	Metal, Polymer, Ceramic y Bio- materials	STD;EDU;IE; IPRS; TT
AMSyst-HTSC- TU/e	R&D	https://www.tu e.nl/en/	NETHERLANDS/No ord-Brabant	ALL	ALL	ALL	ALL	EDU, IE, TT
ANDALTEC	R&D, design, Prototyping	www.andaltec. org/en/	SPAIN/ Andalucía	AE, AU,CG, E, Food Packaging	M&S, D, M, Pr, EL	VP, MJ, ME, BJ	Polymer, Bio- Materials	EDU, TT
ВМС	R&D, OEM, Materials provider	www.brightland smaterialscente r.com	NETHERLANDS/Lim burg	ALL	ALL	PBF, VP, MJ, ME	Polymer, Bio- materials	π
Brunel	R&D, design	www.brunel.ac. uk	UNITED KINGDOM/ Outer London - West and North West	ALL	M&S, D, M, P, PP, Pr	PBF; VP; ME;	Metal, Polymer, Composites	STD;EDU;IE; IPRS; TT
CEA	R&D	www- liten.cea.fr	FRANCE / Rhône- Alpes	ALL	M, P, EL	PBF, VP, MJ, DED	Metal, polymer, ceramic	π
CEIT-IK4	R&D, Materials provider; design	www.ceit.es	SPAIN/ Basque Country	ALL	M&S D;M; P; PP	PBF, MJ	Metal, polymer, ceramic	EDU; TT

CEITEC-BUT	R&D, Materials provider	www.ceitec.eu	CZECH REPUBLIC/ Jihovychod	H, AE, AU	M, P, PP	ME	Metal, Polymer, ceramic, Bio- Materials,	EDU, TT
CENTIMFE	R&D service Bureau; ; design	www.centimfe. com	PORTUGAL/ Centro	ALL, packaging	M&S, D, M, P, PP, Pr	PBF, VP, MJ, ME, DED	Metal, Polymer	EDU, IE, IPRS, TT
CETIM	R&D	www.cetim.fr/f r	FRANCE/ Rhône- Alpes	ALL	ALL	ALL, 3D printing metal	Metal, Polymer, Bio- Materials	STD, EDU, IE,TT
CIDETEC	R&D, Service Bureau	www.cidetc.es	SPAIN/ Pais Vasco	H, AE, AU, EN	РР	-	Metal, Bio- materials	EDU, IE, IPRs, TT
CNES	R&D end user	cnes.fr	FRANCE/ Midi- Pyrénées	AE	ALL	ALL	Metal, Polymer, ceramic,	STD, TT
COVENTRY University	R&D, Design	www.coventry. ac.uk	UNITED KINGDOM/ West Midlands	ALL	ALL	PBD, DED	Metal, Polymer	STD, EDU, IE, TT
CSM	R&D	www.c-s-m.it	ITALY/ Lazio	AE, AU	M, PP, Pr	PBD, VP	Metal, ceramic	EDU, TT
сттс	R&D, Materials provider	www.cttc.fr	FRANCE/ Limousin	H, AE, CG, E, EN	M, P, PP, Pr	VP, MJ, ME, SL, DED, BJ	Ceramic	EDU, TT
CU	R&D	www.cranfield. ac.uk/	UNITED KINGDOM/Bedford shire and Hertfordshire	AE, AU, E, EN, E&T, C	M&S, M, P, Pr	PBF, DED	Metal	STD, EDU, IE, TT
DEMI, FCT NOVA	R&D	https://www.fc t.unl.pt/	PORTUGAL/ Área Metropolitana de Lisboa	H, AE, AU, EN, E&T, Non Destructive Testing (NDT)	M&S, D, M, P, PP, Pr	MJ, ME, DED	Metal, Polymer	EDU, TT
DMRC	R&D, Design	www.dmrc.de	GERMANY/Detmol d	ALL	ALL	PBF, MJ, ME, Arburg Plastic Freeformin g	Metal, polymer	STD, EDU, IE, TT
DTI	R&D, Service Bureau, OEM, design, end user	www.dti.dk	DENMARK/ Hovedstaden	ALL	ALL	PBF, VP, MJ, ME, BJ	Metal, polymer, food, bio- materials	STD, L; EDU, IE, TT
ECN	R&D	www.ecn.nl/ex pertise/enginee ring-materials/	NETHERLANDS/ Noord-Brabant	ALL	M, P, PP, Pr	PBF, VP, DED	Metal, ceramic, catalysts	ιε <i>,</i> ττ
ENGIN	R&D, Design, end user, Education	http://www.car diff.ac.uk/engin eering	UNITED KINGDOM/ East Wales	H, AE, AU, CG, EN, E&T	ALL	PBF, VP, ME	Metal, Polymer	EDU, IE, TT
EURECAT	R&D, Pilot and testing, Training	www.eurecat.o rg	SPAIN/ Cataluña	H, AU, CG E&T	M&S, M; P; Pr	PBF, ME, SL	Metal, polymer, food	EDU, IE, IPRs, TT
Flanders Make	R&D	www.flandersm ake.be	BELGIUM/ Vlaams- Brabant	AE, AU, CG,	P,PP	PBF, DEP	Metal, Polymer	тт
Fontys CoE HTSM	R&D, Design	https://fontys.e du/	NETHERLANDS/ Noord-Brabant	ALL	M&S,D,M,P,PP, Pr	PBF, VP, MJ, ME	Metal, Polymer	EDU, IE, TT
Fraunhofer IFAM Bremen	R&D, Materials provider, Design	www.ifam.frau nhofer.de/en/P rofile/Locations /Bremen	GERMANY/ Bremen	H, AE, E, EN; E&T, C	M&S, D, M, P, PP	PBF, VP, ME; BJ	Metal, Polymer, Ceramic	STD; EDU, IE, IPRs, TT
Fraunhofer IFAM Dresden	R&D, Materials provider, Design	www.ifam.frau nhofer.de/en/P rofile/Locations /Dresden.html	GERMANY/ Dresden	H, AE, AU, E, EN, E&T, C	M&S, D, M, P, PP	PBF, ME, BJ, 3D screen printing	Metal, Ceramic	STD, EDU, IE, IPRs, TT

Fraunhofer ILT Aachen	R&D, Materials provider, Design	https://www.ilt. fraunhofer.de/e n.html	GERMANY/ Aachen	H, AE, AU, EN, E&T, C	M&S, D, M, P, PP, Pr	PBF, SL; DED; O	Metal, Ceramic	STD, EDU, IE, IPRs, TT
Fraunhofer iGCV Augsburg	R&D, Materials provider, Design	https://www.ig cv.fraunhofer.d e/en.html	GERMANY/ Augsburg	H, AE, AU, EN, E&T, C	M&S, D, M, P, PP, Pr	PBF, SL; MJ; O	Metal, Ceramic	STD, EDU, IE, IPRs, TT
Frederick University	R&D	www.frederick. ac.cy	CYPRUS/ Kýpros	H,AU, E&T, C	M&S, D	BJ	Metal, Polymer, bio- materials	STD, EDU ,TT
Friuli Innovazione	R&D, Service Bureau	www.friulinnov azione.it	ITALY/ Friuli- Venezia Giulia	ALL	ALL	-	-	STD, L, EDU, IE, IPRs, TT
IK4-LORTEK	R&D, Design	www.lortek.es	SPAIN/ Pais Vasco	AE, AU, CG, E&T	M&S,D,M,P,PP, Pr	PBF, DED	Metal	EDU, TT
IK4-TEKNIKER	R&D	www.tekniker.e s	SPAIN/ Pais Vasco	AE,AU, E; EN, E&T, C	M&S, D, P, PP	DED	Metal	тт
IMDEA	R&D Materials provider	www.materials. imdea.org/grou ps/pm	SPAIN/ Madrid	ALL	M&S, D, M, PP	ME, SL	Metal, polymer, bio- materials	EDU, TT
IMR	R&D, Design	www.imr.ie	IRELAND/ Southern and Eastern	ALL	ALL	ALL	ALL	STD, L, EDU, IE, TT
INEGI	R&D, Design	http://www.ine gi.pt/inicial.asp ?k=z&LN=EN	PORTUGAL/Norte	H, AE, AU, E&T	ALL	VP, MJ, ME, DED, BJ, Composite materials AM	Metal, Polymer, Ceramic, Composite materials	π
INSPIRE AG	R&D, Design	-	SWITZERLAND	ALL	M&D, D, M, P, PP, Pr	PBF, DED	Metal, polymer, ceramic	STD, EDU, IE, TT,
IOR	R&D, Software Provider, Design, End User	www.ior.it	ITALY/ EmiliaRomagna	H, Biomedical research	M&S, D, M, P, PP, Pr	PBF, VP, ME	Metal, polymer, bio- materials	STD, EDU, TT, Orthopaedic treatments and their validation
ITAINNOVA	R&D, Service Bureau, Design, End user	www.itainnova. es	SPAIN/ Aragon	AE, AU, CG, E, EN, E&T, C	M&S, D, M; P	PBF, MJ	Polymer	тт
IPC	R&D, Service Bureau, Design	http://ct- ipc.com/	FRANCE/ Rhône- Alpes	ALL	M&S, D; M; P; PP; Pr	PBF, VP, ME	Metal, polymer	EDU, IE, TT
IQS. Ramon Llull University	R&D	www.iqs.edu	SPAIN/ Cataluña	own R&D	M&S, D, M, P	VP, ME	Polymer, ceramic, bio- materials	EDU, TT
ISQ	R&D	www.isq- group.com	PORTUGAL/Area Metropolitana de Lisboa	ALL	M, P, EL	DED	Metal	STD, EDU, TT
ITC	R&D, Service Bureau, End user	http://www.itc. uji.es	Spain/Comunidad Valenciana	CG, EN, C, Ceramic	ALL	ME, BJ	Ceramic	STD, EDU, IE, TT
KIMAB	R&D	www.swerea.se /kimab	SWEDEN/ Stockholm	ALL	M&S, M, P	PBF	Metal	EDU, TT
KMWE	R&D, Service Bureau, OEMs, Design	www.kmwe.co m/Capabilities/ Additive- Manufacturing. htm	NETHERLANDS/ Noord-Brabant	H, AE, Semiconductors , Industrial Automation	ALL	PBF, DED, EBAM	Metal	IE, TT
LEITAT	R&D, Design	www.leitat.org	SPAIN/Catalonia	H, AE, AU, CG, EN	ALL	PBF	Metal, Polymer,	IE, IPRs, TT

							bio- materials	
LMS	R&D, Design, Modelling and simulation, experimentation	http://lms.mec h.upatras.gr/	GREECE/ Δυτική Ελλάδα	AE, AU,CG	ALL	PBF, VP, ME, SL, DED	Metal, polymer	STD, EDU, T
LBORO	R&D, Design	www.lboro.ac.u k/	UNITED KINGDOM /Leicestershire, Rutland and Northamptonshire	С	D, M, P, PP, Pr	ME	Concrete	STD, EDU, IE IPRs, TT
Lurederra	R&D, Materials provider	www.lurederra. es	SPAIN/ Navarra	ALL	M, Pr	materials technology, nanotechn ology	Metal, polymer, ceramic, nanomateri als	STD, IPRs, T
M2i	R&D, Services Bureau	www.m2i.nl	NETHERLANDS/ Zuid-Holland	AE, AU, O (maritime and offshore)	M&S, M	PBF, DED	Metal	IPRs, TT
NLR	R&D, Design	www.nlr.nl	NETHERLANDS/ Flevoland	ALL	M&S, D, M, P, PP, Pr	PBF	Metal	EDU, TT
POLIMI- Departmenrt of Mechanical Engineering	R&D	www.polimi.it	ITALY/ Lombardia	ALL	ALL	PBF, ME, SL, DED	Metal, polymer, ceramic, bio- materials	STD, EDU, IE IPRs, TT
PRODINTEC	R&D, Services Bureau, Design	www.prodintec. com	SPAIN/ Asturias	ALL	M&S, D, P, PP, Pr	PBF, VP, MJ, ME, SL;BJ O: direct light processing	ALL	STD, EDU, IE IPRs, TT
PROFACTOR	R&D	www.profactor. at	AUSTRIA/ Oberösterreich	ALL	M&S, M, P; PP	VP, MJ, ME	Polymer	EDU, IPRs, TT
PSI	R&D, End User	www.psi.ch	SWITZERLAND/ Aargau	H, AE, AU, E, EN, C	M&S, M, PP, Pr	PBF	Metal, Polymer, Ceramic, Bio- materials	-
SIRRIS	R&D, Services Bureau	www.sirris.be	BELGIUM/ Prov. Liège	ALL	D, M, P, PP, Pr	ALL	Metal, Polymer, Ceramic	STD, L, IPRs TT
TECNALIA	R&D	www.tecnalia.c om	SPAIN/ País Vasco	ALL	ALL	DED	Metal	L, IE, IPRs
TNO	R&D, Design	www.tno.nl	NETHERLANDS/No ord-Brabant	ALL	ALL	PBF, VP, MJ, ME, BJ, continuous SLS or material jetting	Metal, polymer, ceramic, food	STD, EDU, IE IPRs, TT
TUD	R&D, Design	http://www.hy perbody.nl/rese arch/projects/r obotic-building/	NETHERLANDS /Zuid-Holland	AE, AU, E, EN, E&T, C	M&S, D, M	ME	Polymer, Ceramic	EDU
TU Delf	R&D, Design, End user	http://designinf ormatics.bk.tud elft.nl/	NETHERLANDS /Zuid-Holland	С	M&S, D, P	PBF, VP ME	Polymer	EDU, TT
TUKE	End user	www.sjf.tuke.sk /kppt/	SLOVAKIA/ Východné Slovensko	ALL	М, Р, РР	ME	Polymer	EDU, TT
TWI	R&D	www.twi.co.uk	UNITED KINGDOM/ South Yorkshire	ALL	ALL	PBF, DED	Metal	STD, EDU, T

University of Extremadura	R&D	http://material es.unex.es	SPAIN/ Extremadura	ALL	M&S, M, P	ME	Polymer, ceramic, biomaterail s	EDU, TT		
VIVES	Educational Establishment, R&D, design	www.vives.be/ onderzoek- ontwerp- productietechn ologie	BELGIUM	CG, O (mechanics)	M, D, PP, Pr	PBF, ME,	Metal, Polymer	EDU, TT		
VTT	R&D, Material Provider, Design	www.vtt.fi/pow der	FINLAND	ALL	ALL	PBF, ME, DED, Powder production	Metal, Ceramic	L, EDU, IE, IPRs, TT		
Industry										
NAME	SUPPLY CHAIN	WEBSITE	COUNTRY/ Region	Sectors	VC segments	AM process es	AM Materia ls	Non Tech.		
3DStep	R&D, Service Bureau, Design, AM training, Innovation services	www.3dstep.fi	FINLAND/Tampere	AE, EN, E&T, C, Food	ALL	PBF, ME	Metal, Polymer, Bio- materials, Composite materials, Chocolate	EDU, IE, TT, Community developmen t		
3DCeram Sinto	Service Bureau, OEMs, Materials Provider	www.3Dceram. com	FRANCE/Limousin	H, AE,AU,E,EN	M,P,PP,Pr	VP	Ceramic	IE, TT		
+90	R&D, Service Bureau, OEMs, Design, End User	www.arti90.co m	TURKEY	ALL	D, M, P, PP, Pr	PBF, MJ, ME	Polymer	STD		
ADMATEC	R&D, Service Bureau, OEM	www.admatece urope.com	NETHERLANDS/No ord-Brabant	H, AE, AU, E, ALL	M, P, PP, Pr	VP	Metal, Polymer, Ceramic, Bio- materials	-		
AIM Sweden	R&D, Services Bureau, OEMs, Design	www.aimswede n.com	SWEDEN/ Mellersta Norrland	H, AE, AU, O (industrial)	M&S, D, M, P ,PP, Pr	PBF, EBM	Metal	EDU, IE, TT		
AIRBUS	R&D, Design, End user	www.airbus.co m	SPAIN	AE	M&S, D, M; PP; Pr	PBF, MJ; DED	Metal, Polymer	STD, LE, EDU, IE, IPRS, TT		
ALTRAN Deutschland SAS & Co. KG	R&D, OEM, Software provider, design	www.altran.co m	GERMANY/ Hamburg	ALL	ALL	PBF, ME	Metal, Polymer, Biomaterial s	STD, EDU, IE, IPRS, TT		
ATLAS COPCO	OEM	www.atlascopc o.com	BELGIUM/ Antwerpen	O (industrial applications)	M&S, D, P, PP, Pr	PBF, ME, BJ	Metal, polymer	L, EDU		
ATOS SE	R&D, OEMs, Materials & Software provider, design, End user		FRANCE/ Ile de France	ALL	M&S, D, P, Pr	-	-	STD, EDU; IE, IPRs, TT		
CAM	R&D, Services Bureau, OEMs, Design, End user	www.croftam.c o.uk	UK/Cheshire	AE, AU, CG ,E, EN,E&T, C	D, PP, Pr	PBF	Metal	EDU, IE		
CRIT	R&D	www.crit- research.it	ITALY/ Emilia- Romagna	AE, AU, E	D, M, P	PBF	Metal, polymer	EDU, IE, TT		
Digital Metal	Services Bureau, Equipment supplier	www.digitalmet al.tech	SWEDEN/ Sydsverige	H, AE, AU, CG, EN, E&T	D, M, P, PP, Pr	BJ	Metal	STD, IE, IPRs		

EOS	R&D, OEM, Materials & Software provider, End user	www.eos.info	GERMANY/Ob erbayern	ALL	ALL	PBF	Metal, polymer	STD, IE, IPRs
ESI Group	R&D, Software provider, Design	www.esi- group.com	FRANCE/ Île de France	ALL	M&S D	PBF, DED	Metal	STD; EDU; TT; IPRs; IE
FADDTORY	R&D, Service Bureau design, end user	www.faddtory.c om	BELGIUM/ Namur	H, AE, AU, CG, E, EN, E&T	ALL	PBE, VP, ME, DED, BJ	Metal, Polymer, Ceramic	EDU, IE, TT
GFMS	OEM, pre- and postprocessing equipment	www.gfms.com	SWITZERLAND/Gen eva	ALL	D, P, PP	PBF, DED	Metal	IE
GOCERAM AB	Materials provider	www.goceram. com	SWEDEN/ Västsverige	ALL	М	ME, Feedstock provider	ALL	TT
Granta	R&D, Software provider	www.grantades ign.com	UNITED KINGDOM/ East Anglia	ALL	ALL	ALL	ALL	STD, EDU, IE, TT
Granutools	R&D, OEMs, Materials provider, End user	www.granutool s.com	BELGIUM/ Liège	ALL	Ρ	PBF	Metal, polymer, ceramic	STD, EDU, IE, TT
HAMUEL	Machine tool builder	www.hamuel.d e	GERMANY/Oberfra nken	E&T	Ρ	Laser Metal Deposition (LMD)	Metal	EDU, TT
HILTI	End User	www.hilti.group	LIECHTENSTEIN	E&T, C	M&S, M, Pr	PBF, MJ, BJ	Metal, Ceramic, Hardmetals (cemented carbide composites)	IE
Höganäs	R&D, Materials provider	www.hoganas.c om	SWEDEN/ Sydsverige	ALL	М	PBF, DED, BJ	Metal	STD, EDU, IE, IPRs
IMA	R&D, Design, End User	www.ima.it	ITALY/ Emilia- Romagna	Industrial machines for packaging	D. Pr	PBF	Polymer	IE, TT
IMR	Materials provider	www.imr- group.com	AUSTRIA/ Kärnten	AE, AU, CG, EN, E&T	м	PBF, MJ, BJ	Metal	IE
InnoSyn B.V.	End User	www.innosyn.c om	NETHERLANDS/ Limburg	E, (Chemical)	Р	PBF	Metal	IE
LCV	R&D, Services Bureau, Design	www.lcv.be	BELGIUM/ Antwerpen	ALL	D, M, P, Pr	DED	Metal	STD, TT
LINDE France	Materials provider, Process gases for AM + powder production + post-treatment	www.linde- gas.fr	FRANCE/ Rhône- Alpes	ALL	M, P, PP, Pr	PBF, MJ, SL, DED, BJ, Cladding, deposition	Metal	-
Lithoz	R&D, Materials provider, design, technology provider	www.lithoz.co m/en/	AUSTRIA/Wien	ALL	D; M; P; PP	VP	ceramic, biomaterial s	EDU; IE, IPRs, TT
MATERIALISE NV	R&D, Service Bureau, software provider, design, end user	www.materialis e.com	BELGIUM/ Prov. Vlaams-Brabant	H, AE, AU, CG	M, D; M; P; PP; Pr	PBF; VP; MJ; ME	Metal, polymer, ceramic, biomaterial s	STD; L; IE; IPRS; TT
MBN	R&D, Materials provider	www.mbn.it	ITALY/Veneto	H, O (cutting tools)	М	PBF, DED, O	Metal, polymer,	-

	-							
							composite, intermetalli c	
MCI	Service Burerau, Communication and Dissemination partner	www.mci- group.com	BELGIUM/ Région de Bruxelles- Capitale	ALL	ALL	ALL	ALL	STD; L; EDU, IE; IPRS; TT
MIMETE	Materials provider	www.mimete.c om	ITALY/Lombardia	ALL	М	Gas atomizatio n of metal powders for AM	Metal	-
Melotte	Service Bureau, design	www.melotte.b e	BELGIUM/ Prov. Limburg	ALL	M&S, D; PP; Pr	Selective Laser Melting	Metal	EDU, IE
N-ABLE	Service Bureau	www.n-able.io	FRANCE/ Rhône- Alpes	ALL	ALL	ALL	ALL	STD, L, EDU, IE, TT, R&D/Demon stration and market policy
OCE	R&D, OEMs, Design	http://oce.com/	NETHERLANDS/ Limburg	ALL	M&D, D, M, P, PP, Pr	MJ	Metal, polymer, ceramic	IE
Oceanz B.V.	R&D, Service Bureau, OEM, Materials provider, Design, End user	http://oceanz.e u/	NETHERLANDS/ Gelderland	ALL	M, P, PP, Pr	SLS	Polymer, Food	EDU, IE
PRIMA	OEM	www.primaindu strie.com	ITALY/Piedmont	E, EN, E&T, C	Р	PBF, DED	Metal	STD, IE
PwC	R&D Business Consultancy	www.pwc.nl	NETHERLANDS/ Noord-Holland	ALL	ALL	ALL	ALL	L, EDU, IE, IPRs, TT
RINA Consulting S.p.A.	R&D, D, Engineering consultancy operation and maintenance	www.rina.org	ITALY/Genova	ALL	ALL	ALL	Metal, polymer	STD, EDU, IE, IPRs, TT, roadmappin g, safety
RINA Consulting - Centro Sviluppo Materiali S.p.A.	R&D, D, Engineering consultancy; Materials, processes	www.rina.org	ITALY/ Lazio	ALL	ALL	ALL	Metal, polymer	STD, EDU, IE, IPRs, TT, roadmappin g, safety
Rosswag	R&D, Services bureau, Materials provider, Design	www.rosswag- engineering.de	GERMANY/Karlsruh e	EN, E&T, C	ALL	PBF	Metal	STD, EDU, TT
SAFRAN	R&D, OEMs, End user	www.safran- group.com	FRANCE/Île de France	AE	All	PBF, DED	Metal, polymer, ceramic	IE
SCHUNK	R&D, Design	www.schunk.co m	GERMANY/Stuttgar t	O (mechanical, engineering, automation)	M, D, Pr	PBF, O (laser sintering plastics)	Polymer	IE, IPR
SIEMENS	R&D, Software provider, Design, End user	www.siemens.c om	GERMANY/Berlin	Н, Е	All	PBF, VP, ME, DED	Metal, polymer, ceramic	STD, L, EDU, IE, IPR, TT
Sintertech	OEM	-	FRANCE/Rhône- Alpes	AE, AU, CG, EN	Pr	PBF, BJ	Metal	-

			Denvel					
SWEREA KIWAB	R&D	www.swerea.se /kimab	SWEDEN/ Stockholm	ALL	M&S, M, P	BPF	Metal	EDU, TT
TRIDITIVE	R&D, Services bureau, Design	www.dynamics. triditive.com	SPAIN/Asturias	All	M&S, D, P, PP, PR	VP, ME	Polymer	EDU, IE, TT
TRUMPF	R&D OEM, Materials provider,Softwar e provider	www.trumpf.co m	GERMANY/ Baden- Württemberg	AE, AU, CG, EN, E&T	M&S, D, M, P, PP, PR	PBF, DED	Metal	EDU, IE
			0	ther				
NAME	SUPPLY CHAIN	WEBSITE	COUNTRY/ Region	Sectors	VC segments	AM process es	AM Materia Is	Non Tech.
AD GLOBAL	Human Resources	www.alexander danielsglobal.co m	SPAIN AND UK/Barcelona and Birmingham	ALL	ALL	ALL	ALL	EDU, Hiring AM talent
BERENSCHOT	Consulting company	www.berensch ot.com	NETHERLANDS/Utr echt	ALL	ALL	ALL	ALL	STD,EDI, IE, IPRs, TT
IDEA CONSULT	Consulting company	www.ideaconsu lt.be	BELGIUM/ Bruxelles-Capitale	ALL	ALL	ALL	ALL	L, IE, TT
ISONORM	Consultancy on standardisation	-	ITALY/ Piemonte	ALL	ALL	0	ALL	STD
		(Clusters/netwo	orks/associa	tions			
NAME	SUPPLY CHAIN	WEBSITE	COUNTRY/ Region	Sectors	VC segments	AM process es	AM Materia Is	Non Tech.
3C ACADEMY	R&D Service Bureau; design provider	-	BULGARIA/ Sofia- grad	H, AU; CG, E, EN; E&T, C	M&S, D, P, PP, Pr	PBF, VP, MJ; ME; DED, BJ	Metal, polymer, ceramic	STD, EDU, IE, IPRs
3DPA	Service Bureau	www.the3dprin tingassociation. com	NETHERLANDS/ Zuid-Holland	ALL	ALL	ALL	ALL	STD, L; EDU, IPRs
AM Platform	ALL	www.am- platform.eu	EUROPE	ALL	ALL	ALL	ALL	All
ADDIMAT	ALL	www.addimat.e s	SPAIN/ Pais Vasco	ALL	ALL	ALL	ALL	-
CECIMO	R&D Materials & software provider	www.cecimo.eu	BELGIUM/ Bruxelles-Capitale	O (machine tool)	D, M, P, PP; Pr	PBF	Metal	STD, L; EDU; IE
EPMA	All Metal AM supply Chain	www.epma.co m	BELGIUM/ Bruxelles-Capitale	O (powder metallurgy)	ALL	PBF	Metal	EDU, TT, Networking; Synergy
ERRIN	Network regional Innovation and of Smart Specialisation Strategies.	www.errin.eu	BELGIUM/ Bruxelles-Capitale	O (AM and nanotechnology)	-	-	-	EDU, TT, Networking
EWF	Education & Training, Standardization	www.ewf.be	BELGIUM/ Bruxelles-Capitale	AE, AU, CG, E, Manufacturing	M, P	PBD, DED	Metal, polymer	STD, EDU, IE, IPRs, TT
FLAM3D	cluster, network, association	www.flam3d.be	BELGIUM/ Flanders	ALL	ALL	-	ALL	ALL
IAM 3D Hub	R&D OEM, Design, Business development	-	SPAIN/ Catalonia	ALL	ALL	PBF, VP, ME	Metal, Polymer	STD, EDU, IE, IPRs, TT
	R&D service	en.matikem.co	FRANCE/ Nord -		D, M, P, Pr, EL		Polymer,	STD, EDU, IE,

	Materials provider; design; end user						food, bio materials, o	
PRODUTECH - Production Technologies Cluster	ALL	www.produtec h.org	PORTUGAL/ Norte	ALL	ALL	ALL	ALL	STD, L, EDU, IE, IPRs, TT

ANNEX E: AM-MOTION Gaps and actions details

TECHNICAL CROSS CUTTING

Action name			production shape optimization "automatic" model-aided print			ons to 3D models			
Action n.	1		ector		hnical Cross-C	utting			
Description of the	ne challer	nge (c	urrent gap)						
Alignment is nee planning. Fast, e performed (e.g.	Development of accurate modelling and simulation tools is an important fundamental building block. Alignment is needed among mathematical representations in CAD, FEM, simulations and project planning. Fast, economic modelling is required. Some good examples of such activity has been performed (e.g. FIOH in Finland, INRS France) but further efforts are required. One of key aspects is interoperability and continuity.								
Proposed activities									
 Complete realisation from design to part. Holistic modelling approaches using multi-physics, multiscale simulation and going from process parameters and simulation to product mechanical properties, via thermal mapping/history of the workpiece. Integrate software tools with lean management, considering the overall life cycle assessment Integrate software tools with increased automation of AM processes (including robotics for manufacturing and packaging) Stochastic/empirical modelling techniques utilizing a large volume of data (knowledge repository) Development of material databases (material, properties and relation to surface condition) Integration of modelling in the general process. Digital twin approaches Develop software tools that enable parametric modelling of lattice structures for design of lightweight products. Exploitation of FP7/H2020 projects' outcomes in this field (in alignment with the European Material Modelling Council). 									
Ongoing & recer already (partiall addressing the g	y)	S	CAxMan, ENCOMPASS, ADDAM SYMBIONICA, SMARTIC, BAMO		en, Bionic Airc	craft, DIMAP,			
Value chain segr	nents		xModellingxDesignxMaterialxProcess	x	Post Process Product End of Life Complete VC				
Current TRL		4-5	-	et TRL		6			
Type of Action			RIA						
High expected impact on: Economic & Industrial Increased product quality and perform Increased production capacity Reduced time to market Environment & Social Material resource saving Increased number of jobs Jobs reshoring in EU					rmances				

Action name	Advanced a materials	nd novel technologies for multi	-voxel printing and digital					
Action n.	2	Sector	Technical Cross-Cutting					
Description of	the challenge	e (current gap)						
Multi-material printing is the combination of materials is on the Macro Level. Digital material is a seemingly one material where the combination of materials is on the Voxel level (microstructure), achieving completely new macroscopic properties.Voxel (volumetric pixel) is a volume element representing a value on a regular grid in three dimensional space. Most AM technologies (e.g. SLA, SLS, FDM) are working on a layer level. Working at voxel level will increase 3D printing opportunities enhancing the quality and functionalities of products (e.g. by achieving full color 3D printing, continuous transitions of properties, building new materials etc.). Further research is needed to develop novel incremental technologies able to control both layers and voxels (e.g. based on polyjet) or to work without layers achieving full digital printing.								
Proposed activ	vities							
digital materia ● Demonstrate	s the technolo	d technologies for multi-voxel p ogies in relevant environment ar						
Ongoing & rec already (partia addressing the	lly)							
Value chain se	gments	Modelling	Post Process					
		x Design	Product					
		x Material	End of Life					
		x Process	Complete VC					
Current TRL		Target	·					
Type of Action		raiget						
High expected		n: <u>Economic & Industrial</u> Potential for EU leadership Increased production capacity Reduced time to market						
		Environment & Social						
		Material resource saving						
		Jobs reshoring in EU						
		Increased number of jobs						

Action name	Design guide	lines: need for AM proces	ss-/ material	-/ application	-specific guidelines				
Action n.	3	Sector		Technical (Cross-Cutting				
Description of the									
under developm ISO/ASTM DIS 52 there is need for -Automotive -For electron -For light we	Despite the solid progress in standardisation (there are ISO guidelines developed by ISAP TC 261 (still under development) ISO/ASTM DIS 52910-2 (general); ISO/ASTM 52911-1 (powder bed metals); ISO/ASTM DIS 52911-2 (Powder bed plastics) and ISO/NP TR 52912 (functionally graded AM parts)), there is need for process; material; application specific guidelines as well as Design standards for AM: -Automotive industry -For electronic devices -For light weight structures -For low vibration.								
Proposed activities									
 Establishment tools Design guidelin manufacturing a Development of based to functio ASTM F42 on the Creation of a comparison 	of a set of gen les should not spects of AM of topology op n-based desig e subject entral Europea ecific Design (be recorded. ht projects y)	eric AM design rules with a be limited to just the AM p in combination with both p itimization methodologies i n with the aim to support to an data bank as base refere Guidelines: as industry field FAST, ENCOMPASS, LASIN MERLIN; AIFORAMA, Krak 4DHYBRID, SMARTIC X Modelling X Design Material Process	orocess but a preparations, in the design the ongoing v ence ds mature in VIM, PARADI	also include th , pre- and posi- phase to move work of ISO TO particular AM DISE, IMRAM,	e entire t-processing ve from feature- C/261 jointly with applications, best LASIMM, TIFAN; LIS; SYMBIONICA;				
Current TRL	5-6		Target TRL		7				
Type of Action		IA/CSA							
High expected in	npact on:	<u>Economic & Industrial</u> Increased product quali Increased business gen Increased production ca <u>Environment & Social</u> Material resource saving Jobs reshoring in EU Increased number of jo	erated pacity g	rmances					

	Need for ad	vanced in process monitor	ing and control and	generation of process				
Action name	validation d	ata (through for eg. Artific	al Vision, prediction	models of				
	microstruct	ure control of parts during	fabrication and sup	ply chain control)				
Action n.	4	Sector	Tech	nical Cross-Cutting				
Description of t	he challenge	(current gap)						
		int for quality and production						
-		nable effective in process m						
-		monitoring and control to n		increase reproducibility				
-		is also need for Traceability	of AM products.					
Proposed activities								
	 Use of a "knowledge repository" to improve process reliability 							
		ule during the design proc		orporated with product				
	-	tion, nesting, maintenance	-					
-	-	e of defects/porosity/surfa						
	•	ne critical defect shape /size essing methods (e.g. heat ti	•					
laser peening) to								
 Identify the best manufacturing route for a product Definition of the parameters to be controlled 								
	•	n-process faster/cheaper m	easurement techniq	ues to enable total				
		niques more developed in s						
AM. Integration	of artificial vi	sion in in-line monitoring sy	/stem.					
	-	and of materials processing		ct defect detection				
		ng and/or in-situ analysis o						
	-	ermoplastic materials joini	•					
	-	asonic welding vibration du	ring the welding pro	cess, infrared inspection,				
artificial vision in	•		aa ta ha fullu intaana					
	-	AM manufacturing platforr ssments, and its cross valid		-				
	•	n similar parts, processes, c	-					
big data, data sa				combinations, meraamg				
	•	oport business decisions						
		, process validation data mor	e than real time con	trol				
Ongoing & rece								
already (partial	y)	Aircraft, BOREALIS; SYME		iken, Open Hybrid, Bionic				
addressing the	gaps	All Clait, DOREALIS, STIVIE	SIONICA, 4DHTBRID,	SIVIANTIC, IVIAESTRO				
Value chain seg	ments	x Modelling	x Post Pr	ocess				
		x Design	Produc					
		Material	End of					
		x Process	Comple					
Current TRL	4-5		Target TRL	6				
Type of Action	4-3	RIA	I diget INL	U				
High expected i	mnact on:	Economic & Industrial						
ingi expected i								

Increased product quality and performances
Increased IPR protection
Increased production capacity
Environment & Social
Jobs reshoring in EU
Increased number of jobs
Material resource saving

Action name	Simulat	ion /	prediction of thermal / residu	al stress	for AM		
Action n.	5		Sector		Technical C	Cross-Cutting	
Description of th	e challe	nge (o	current gap)				
	•	•	ess parameters for reducing st ct manufacturing (LDM))	ructura	distortion and	d residual stresses	
Proposed activiti		i unc					
 Investigation of deposition strate Thermal field n distortion. Investigating he properties to ena 	 Investigating how the process parameters affect thermal field, microstructure and mechanical properties to enable prediction of material properties. 						
· ·			ocess methods for reduction o	t residu	al stresses		
Ongoing & recen already (partially addressing the g	()	ts	Borealis, FAST, CAxMan, ENG Open Hybrid, DIMAP	OMPAS	S, LASIMM, Di	straction, Kraken,	
Value chain segn	nents		xModellingxDesignMaterialProcess		Post Process Product End of Life Complete VC		
Current TRL		4-5	Tai	get TRL		6-7	
Type of Action			IA				
High expected in	npact on	:	<u>Economic & Industrial</u> Increased product quality an Increased production capac Reduced time to market <u>Environment & Social</u> Material resource saving Jobs reshoring in EU Increased number of jobs	•	rmances		

Action name	Innovative s	strategies to reduce post p	rocessing ste	eps/activities				
Action n.	6	Sector		Technical C	Cross-Cutting			
Description of the	e challenge	(current gap)						
Post-processing involves removal of the part from the platform and/or finishing the part. This segment of the manufacturing VC should be minimised, automated and integrated in the overall process as much as possible. Moreover, post-processing quality and reliability should be improved. There is need for breaktrhough innovations which address such challenges.								
Proposed activitie	es							
 Development of innovative AM technologies and processes which minimise the need of post-processing. Strategies for increased automation of post processing and minimisation of manual operations Further investigation and evaluation of the effect of different post-processing operations (for example different heat treatments, Hot isostatic pressing (HIP) etc.) Integration of the AM process in a single process/hybrid machine to reduce the need of post-processing activities In-line process control and development of intelligent fix and handling systems Identifying a cost effective and adequate surface finishing method Understanding how the removal of material from the surface impacts the oversize of the design Investigate how post-processing can be supported via modelling providing a complete digital track of all steps Design approaches in am: make functional use of layers/lines in design for function 								
 Design approac Ongoing & recent 		nake functional use of laye	rs/ines in de	sign for functi	ЮП			
already (partially addressing the ga)	HyProCell, Interreg2seas, IMRAM, TIFAN; Kraken, F			ASS, LASIMM,			
Value chain segm	ents	 Modelling Design Material x Process 		Post Process Product End of Life Complete VC				
Current TRL	4-5		Target TRL		6			
Type of Action		RIA						
High expected impact on: Economic & Industrial Increased product quality and performances Reduced manufacturing cost Increased production capacity Environment & Social Material resource saving Jobs reshoring in EU Increased number of jobs								

De	evelop pro	cedures and methods for qual	ification and prom	oting certification of		
	M products					
Action n.	7	Sector	Technica	al Cross-Cutting		
Description of the o	challenge (current gap)				
A quick and cost-eff	fective cert	ification should be developed.	There is a need for	qualification and		
		increase the number of certifi				
		pecifications (e.g. aerospace) is	also important. The	ere is need to boost		
equivalence-Based & model-based qualification routes						
Proposed activities						
 Adaptive and flex 	•	-				
-	-	of a matrix of required mecha				
	itigue endi	urance, fatigue crack growth ra	te, fracture toughne	ess) that comply with		
certification rules	cian: Drodi	ctive models that develop and	domonstrato the sa	nability of prodiction		
-	-	o satisfy the certification requi				
	•	ristics, such as graded microstr				
•		pic properties of the final parts				
		ition of defects in AM compone		an Atlas of defects.		
Defects nomenclatu	-					
 Development of a 	a European	wide system to certify compare	nies that carry out A	M (for example		
ISO3834). This is cru	ucial to ens	sure the quality of the products	that are produced			
 Ensure that existi 	ng knowle	dge and rules are transmitted t	o AM players			
Ongoing & recent p	orojects	IMRAM, LASIMM , ADDISPAC	F. Kraken, FNCOMF	ASS: Open Hybrid.		
already (partially)		Bionic Aircraft, BOREALIS; SY				
addressing the gap						
Value chain segme	nts	x Modelling	x Post Proce	ess		
		x Design	x Product			
		Material	End of Life	2		
		x Process	Complete			
Current TRL	6		get TRL	7		
Type of Action		CSA				
High expected impa	act on:	Economic & Industrial	ad norformanas			
		Increased product quality a				
Increased business generated Increased production capacity						
		Environment & Social				
		Material resource saving				
		Jobs reshoring in EU				
		Increased number of jobs				

Components/products Action n. 8 Sector Technical Cross-Cutting Description of the challenge (current gap)						
Description of the challenge (current gap)						
From one hand, there is a shortage of material recycling services and means for reusing AM materials.						
From the other hand it is needed to promote reusing feedstock for parts production.						
Proposed activities						
• Effective Life Cycle Analyses (LCA), Life Cycle Cost Analysis and Social LCA, enabling the application						
of LC methodologies for accurate analysis of the environmental impact of AM processes,						
incorporating an environmental perspective into decision-making processes for transitioning to AM.						
• Development of Environmental Impact Module/Evaluator acquiring real-time process data from						
measurement systems						
• Definition and quantification of environmental KPIs such as energy consumption, waste streams,						
 heat emission and gaseous emissions Development of effective feedstock recycling processes 						
 Development of regulatory requirements for recycling metal powders and production of functional 						
parts						
 Need for standard validation procedure for material properties in parts produced with feedstock 						
that has been subjected tore-use or recycling, as well as guidelines for acceptable material properties						
and actions that restore the material properties to the original target values						
Ongoing & recent projects						
already (partially) PARADDISE, MERLIN, BARBARA, CIRCPACK; Bionic Aircraft						
addressing the gaps						
Value chain segments						
Modelling Post Process						
Design Product						
Material End of Life						
Process X Complete VC						
Current TRL 4-6 Target TRL 7						
Type of Action IA						
High expected impact on: Economic & Industrial Potential for EU leadership						
Increased product quality and performances						
Increased product quality and performances						
Environment & Social						
Material resource saving						
Increased recycling						
Better environment						

Action name	Buildin	g a kn	owledge repository of ma	terials and r	rocess naram	eters
Action n.	9	5 a Kii	Sector			Cross-Cutting
Description of t	-	ango (rechincar	
-			ers and material properties	c pood to bo	doveloped to	onablo
	•		gn and establishment of m		•	
	•	-	nieve sustainability of pref	-		•
•		to aci	neve sustainability of pren	erreu/chose	II KIIOwieuge I	epository
Proposed activit		f		. /:		
			e effect of AM parameters			
•			tal footprint (activity conne		• •	• •
		-	of data regarding mechanic	· ·		
-	-		e respective machine char			rameters.
			abase to enable the correction and a second s			toviation
-			everal protective gases / m	ixtures on m	aterial charac	teristics
•	•	-	cessful and failed)			
•			a (e.g. Cambridge pharma) conaborati	ng at pre-com	ipetitive stage
Ongoing & receiption		CTS	AM Database (@AM-Plat	form), FAST	, SAMT SUDO	E, ENCOMPASS,
already (partiall	• •		PARADDISE, IMRAM, AMable, Kraken, LASIMM, ibus			
addressing the g						
Value chain seg	ments		x Modelling	x	Post Process	1
			x Design x Product			
			x Material	Material End of Life		
			x Process Complete VC		2	
Current TRL		4-6		Target TRL		7
Type of Action			IA/CSA			
High expected in	mpact o	n:	Economic & Industrial			
0 - 1			Increased product quality and performances			
		Reduced time to market				
			Potential for EU leadership			
			Environment & Social			
			Material resource saving	B		
			Jobs reshoring in EU			
Increased number of jobs						

Action name		dustry engagement on sta on of Am Standardization		lopment and	decrease	
Action n.	10	Secto		Technical (Cross-Cutting	
Description of t						
To accelerate AM market take up, industry should be further engage in CEN, ASTM, and ISO standards development (e.g. in process certification: -Simulation software for NDF & variation certificaton -Application specific requirements). Possible barriers concerning time and money to follow this activity should be minimized. Involvement of customers in AM is important. There is also need for Open data warehouse on certified designs (with production requirements)						
Proposed activit	ties					
 Lower the bar key meetings/ev Promote the colocal, national, E Cooperation bet Support further to evaluate possistic dedicated to deate be having a conttional Explore feasib be extended to a set of the se	rier to engagi rents etc. ongoing activit U and internative ween the differ er engagemer ible use of re- aling/engagin inuous standa ility to evalua AM oility of inform gramme) nt projects y) gaps	ng stakeholders by central ties on standardization at a ational standards developm ferent Standardization boo nt via H2020 projects or otl sults for standards elabora g with standardization sho arisation project that inter te which standards already nation on existing AM stan SASAM (update needed) Kraken, Open Hybrid, 40 Modelling Design Material Process	n wider level. hent bodies/ lies her relevant p tion. When s buld be mand acts and coor y approved a dards and H dards and H	Continuous ir activities shou orojects with o uitable a Wor atory. Anothe rdinates with o nd existing in f WIP (Health W ARADDISE, LAS	hteraction with Id be pursued. Central focus on AM k Package er alternative could existing projects non-AM sectors can Vorkforce SIMM 0, AMable, ONICA, BAMOS	
Current TRL	NA		Target TRL		NA	
Type of Action		CSA				
High expected in	mpact on:	<u>Economic & Industrial</u> Increased product qual Increased production of Potential for EU leader <u>Environment & Social</u> Material resource savir Jobs reshoring in EU Increased number of jo	apacity ship ng	rmances		

Action name Av	ailability o	f high quality and cost-effectiv	e materials			
Action n.	11	Sector	Technical Cross-Cutting			
Description of the c	hallenge (o	current gap)				
AM community relies on a limited selection of conventional feedstock material. The availability of quality, economically feasible raw materials or feedstocks should be fostered. The range of available materials needs to be expanded (e.g. there is need for high-class powders (Titanium); polymer compounds with tailor made properties (with active funcionalities such as antimicrobic, electrical or thermal conductive)). It is important to understand to transport these materials (safety issues) to achieve distributed manufacturing; Strategic support is needed for European powder/material for AM supply chain and growth						
Proposed activities						
 Developing new polymers (and charge, where relevant) through interdisciplinary actions linking together chemistry, material research, new manufacturing process and user needs. Realization of innovative feedstock for FDM 3d printer based on polymer compound with tailor made properties (with active functionalities such as antimicrobial, electrical or thermal conductive) Ultra-high temperature materials (refractory, composite, others). New alloys with high temperature capability Research into materials suitable for printing of multifunctional components/ Multi-material for multi-functional parts towards smart system. Use of Hybrid AM machine with tools able to improve joining between dissimilar materials (for example atmospheric plasma jet) Research on materials compatibility with current and novel AM processing technologies Novel materials resulting in fewer undesirable by-products and less waste Reinforce collaboration between designers, material producers and AM machine manufacturers Increase awareness on existing powder metallurgy solutions 						
Ongoing & recent p already (partially) addressing the gaps		FAST, LASIMM, AlForAMA, Kra BAMOS, EAST	aken, Bionic Aircraft, DIMAP, SMARTIC ,			
addressing the gaps x Modelling Post Process X Design Product X Material End of Life Process Complete VC						
Current TRL	4-6	Targ	get TRL 7			
Type of Action		IA				
High expected impa	ct on:	Economic & Industrial Increased product quality and Potential for EU leadership Increased IPR protection Environment & Social Jobs reshoring in EU Increased number of jobs Material resource saving	d performances			

		nagement systems: need fo		of key quality	affecting
p p		for various AM systems&			
Action n.	12	Sector		Technical (Cross-Cutting
Description of the	-				
Quality management system covering the whole AM-process chain from powder to the final product, as a basis for part qualification, and AM-process chain surveillance. This includes data gained from pre-process analysis (powder), process monitoring solutions as well as machine data etc. Producing parts with standard properties requires development of standard procedures					
Proposed activities	5				
 Development of AM-process chain monitoring solutions, protocols and data systems, which give indication about the conformance of the AM-process chain with existing standards and rules Development of statistically based knowledge about the influence of AM-processing-chain parameters on the final part quality Development of specific "AM-quality management" standards. Definition of quality on several levels: microstructure, mechanical properties and discontinuities Setup of a qualification label for AM service providers Experimentally-validated databases containing standard sets of process parameters per process/machine/material Standard materials database Standard post-processing (especially heat treatment) temperature profiles 					and rules sing-chain lity on several
Ongoing & recent already (partially) addressing the gap		HyProCell, ENCOMPASS,	IMRAM, LAS	IMM , Combil	aser, Kraken
Value chain segme		 Modelling Design Material Process 		Post Process Product End of Life Complete VC	
Current TRL	4-6	5	Target TRL		7
Type of Action		IA			
High expected imp	act on:	Economic & Industrial Increased product qualit Increased production ca Reduced time to marke Environment & Social Increased number of jo Jobs reshoring in EU Material resource savin	apacity t bbs	rmances	

Action name	Integrating A	M technologies into existi	ng industria	l processes/cl	hains		
Action n.	13	Sector		Technical C	Cross-Cutting		
Description of th	e challenge (o	current gap)					
Integration in the shop floor requires attention as AM machines do not stand alone in factories. Combination with other machinery (subtractive, metallization, inspection, assembly) allows complex process chains and highly functional products, thus higher value and possible sale prices. Connect pre- , in- and post-processing for AM parts both physically (automation) and digitally (continuous digital thread)							
Proposed activiti	ies						
 Integration of entire process chains Interfaces development Evaluate/reconfigure CAD/CAM systems. CAD-CAM Platforms to support the integration of AM processes and equipment. Extension of existing file formats (i.e. STEP-NC) to include AM as well as pre- and post-processing steps in different "blocks" Fully automated AM processes connected via ERP and with the other machines in the production lines, to produce single parts in continuous production flow Creation of framework for multiple hardware equipment communication and collaboration 							
Ongoing & recen		NL project PV2020, KitkA			•		
already (partially addressing the g	-	ENCOMPASS, PARADDISE Kraken, ENCOMPASS; Op BAMOS		-			
Value chain segn	nents	Modelling Design X Material X Process		Post Process Product End of Life Complete VC			
Current TRL	4-6		Target TRL		7		
Type of Action		IA					
High expected in	npact on:	Economic & Industrial Increased product qualit Increased production ca Reduced time to market Environment & Social Decrease of inequalities Material resource saving Better environment	pacity	rmances			

otocols for round robin testing						
Sector	Technical Cross-Cutting					
current gap)						
se in AM to gain competitive adva	ntage in Europe by accelerate the					
S						
Proposed activities						
	ng the regions and Member States					
	-					
• •						
-	nal/ national or EU level					
	tethe states of the second state					
• Development of practical solutions for the production and distribution of the products						
between Aim standardization boo	lies					
MANISVS DODEALIS						
MANSYS, BUREALIS						
Modelling	x Post Process					
Design	Product					
x Material	End of Life					
	Complete VC					
	t TRL NA					
	performances					
· · ·						
C C						
-						
0						
	current gap) se in AM to gain competitive adva s environments and networks amounts S3 strategy) / needs along the value reation of an "EU Makes portal / p and incentives at the local/region belling. "Made by AM" lutions for the production and dis between AM standardization book MANSYS, BOREALIS					

Action name		nd demonstration of 4D Printing te material/digital printing	chnologies fueled by smart materials
Action n. 15 Sector Technical Cross-Cutting			

Description of the challenge (current gap)

4D printing is a combination of 3D printing and the fourth dimension, which is time and/or the change of functionalities. This technique allows a printed object to be programmed to carry out shape change while adapting to its surroundings. This allows for masterized self-assembly, multi-functionality, and self-repair. While 4D printing looks promising for many applications such as the packaging, medical, actuation, construction, and automotive fields, it is still a very raw and new technology with many challenges that require resolution. Significant issues include the development of that possess reversibility (e.g shape memory materials; informed matter); material printability and repeatability of 4D printed objects. Moreover mechanical constraints, time response linked with the desired application, design of structured printing (i.e. smart foam) and mathematical modeling are required for the design of the distribution of multiple materials in the structure.

Proposed activities

• Develop and/or optimise new 4 Printing technologies and solutions with smart stimulus-responsive materials (shape/functionality change materials or shape memory materials) able to respond to stimuli such as water, heat, electromagnetic field or light or their combinations.

• Development and application of 4D printing and smart multi-material/digital structures in several sectors (medical, bio-printing, construction, packaging and drug distribution, consumer electronics and automotive).

ana aacomocregi				
Ongoing & recent projec already (partially) addressing the gaps	ts			
Value chain segments		Modelling Design X Material X Process	x Post Product Product End of I Comple	t Life
Current TRL	2-3		Target TRL	4-5
Type of Action		RIA		
High expected impact on:		<u>Economic & Industrial</u> Increased product quality and performances Increased business generated New types of ventures started <u>Environment & Social</u> Material resource saving Better environment Reduction of CO2 emission		

Action name		e among Artificial Intelligence, Ro	obotics, Sensin	g Technologies and 3D	
Print	ing		6		
Action n. 10		Sector	Techr	nical Cross-Cutting	
•					
 Description of the challenge (current gap) Al can make 3D printing more productive by for example enabling more people to be designers (translating their needs directly into CAM files) and improving co-creation opportunities in different environments (e.g.health, consumer markets etc.). Robots and disruptive software may enhance 3D printing speed and properties including quality by introducing artificial intelligence algorithms such as computer vision algorithms for in line quality control. Development of new AM technologies that can move away from classical cartesian coordinates and print in more complex spaces is also important. For example in the health sector it is important to create more complex structures that better mimick the architecture of our body parts. Further research is needed in such areas. Proposed activities O Development of novel AM technologies, integrating mechatronics, robotics and software development Integrate artificial intelligence in 3D printing design process, promoting co-creation and enhancing design opportunities by involving users and different stakeholders (e.g. patients, surgeons etc.) in health and consumer markets. Increase automation, manufacturing speed and in line quality control in 3D printing through robotics and artificial intelligence. 					
Ongoing & recent pro already (partially)	ects				
addressing the gaps Value chain segments					
value chain segments		x Modelling	x Post Pr	ocess	
		x Design	Produc	t	
		x Material	End of	Lifo	
		x Process	Comple	ete VC	
Current TRL	2-3	Targe	et TRL	4-5	
Type of Action		RIA			
High expected impact	on:	<u>Economic & Industrial</u> Increased product quality and performances Increased production capacity Reduced time to market <u>Environment & Social</u> Jobs reshoring in EU Increased number of jobs			
		Material resource saving			

Action name	Developm	ent of improved heat or ligh	t sources f	or AM manufa	cturing equipment	
Action n.	17	Sector		Technical (Cross-Cutting	
Description of the	ne challenge	(current gap)				
The heat or light source (in most) AM equipment is a bottle neck for improved production quantity and accuracy (resolution). This is a very important issue in terms of industries linked to glass manufacturing (not only jewel-lery, but e.g. also optics).						
Proposed activit	ies					
• Development of etc.	of improved	heat transfer/control/distril	oution/stra	tegy/new laser	s/energy sources	
already (partiall	Ongoing & recent projects already (partially) addressing the gaps				NCOMPASS, Bionic	
Value chain segr	nents	 Modelling Design Material x Process 		Post Process Product End of Life Complete VC		
Current TRL	1-	3	Target TR	L	4-5	
Type of Action		RIA				
High expected ir	npact on:	Economic & Industrial Increased product quali Increased production ca Potential for EU leaders Environment & Social Material resource savin Better environment Reduction of CO2 emiss	ipacity hip	ormances		

Action name	Converge	nce betwe	en Virtual Reality a	ind AM					
Action n.	18		Sector		Technical C	Cross-Cutting			
Description of the	Description of the challenge (current gap)								
Availability of eff	fective tec	nnologies f	or virtual reality to	be useful fo	r AM				
Proposed activit									
 Develop AM sr glasses 	nart objec	ts which ca	n be on-site inspec	ted on-site v	with a cell pho	ne and smart			
Ongoing & recer already (partially addressing the g	y)								
Value chain segr	nents		lodelling esign laterial rocess		Post Process Product End of Life Complete VC				
Current TRL		-5		Target TRL		6			
Type of Action		RIA							
High expected ir	npact on:	New Incre Redu <u>Envir</u> Incre Bette	omic & Industrial types of ventures s ased product quali ced time to market onment & Social ased number of jo er quality of life erial resource saving	ty and perfo t bs	rmances				

NON-TECHNICAL CROSS CUTTING

Action name Promot	ing effective co	ommunica	ation of <i>i</i>	AM technologies for high applications and				
Action n. 1	Sect	or		Non-Technical Cross-Cutting				
Description of the challe	Description of the challenge (current gap)							
			over-ch	aracterised and described by excessive				
media hype and expectat	ions. This has b	orought se	erious da	mage to the credibility and development of				
the AM industry. To ensu	re rapid and ef	fective gu	ides, rea	al benefits and impact need be				
communicated to industr	y as well as bas	sic and pr	actical A	M knolewdge should be disseminated. At				
				the short lifetime of new machines which				
are for too short time use	ed, linking the c	liscussion	with ne	w business strategies and models.				
Proposed activities								
-				e.g. Platforms, industrial associations,				
	-			nmunities and foster dialogue between				
			• •	aker, sector magazines, newspapers and 2.0				
tools (Twitter, You Tube)		•						
				overhangs/ supports/solid structures or				
latticed/post-processing	-	-						
			-	ation, including umbrella organizations, of				
training days/seminars in			•					
	-			es to present the novelties, bringing				
				rial implementation, and societal impact.				
				licy makers, industry, end-users etc.) and				
adopting a 'correct' com				inesses in application sectors can have				
	•			ereby improving their practical				
				roblem related to overall conservative				
attitude towards AM in ir			le the pi					
	•	industry (including	g deep-learning and artificial intelligent				
elements)		muustry	including					
Ongoing & recent projec	ts already	SAMT SI	IDOF C	AxMan, ENCOMPASS, all IMR activities,				
(partially) addressing the	-			PACE, Kraken, BOREALIS, SMARTIC, BAMOS				
Current TRL NA	0.1.		et TRL	NA				
Type of Action	CSA			1				
High expected impact	Economic &	& Industri	al					
on:	Increased product quality and performances							
	Increased production capacity							
	Reduced time to market							
	Environme	<u>nt & Socie</u>	<u>al</u>					
	Jobs resho	ring in EU	ļ					
	Increased i	number o	f jobs					
	Material re	source sa	aving					

		Denve								
Action nam		al and training modules both through linking with ula (engineering, business schools) and training on								
Action n.	2	Sector	Non-Technical Cross-Cutting							
Description	Description of the challenge (current gap)									
New jobs ar	ound AM will	be created. Finding the	workforce with the right competences is a							
-			I needs for the AM workforce need to be identified							
	-		ments need to preserve and develop the							
	-		ployers (e.g. Standardisation bodies, IPR entities etc.)							
		•	align their needs with regard to skills with the							
		-	requires an integrated and interdisciplinary							
			force to boost AM's real potential. It is important to							
	-	-	the current uncertainty about their education domain							
-			re is lack of engineering & design specialists in esses has to be masteredwhich is quite difficult as							
	previous worl		esses has to be masteredwhich is quite difficult as							
Proposed a	•	(5.								
-		al programs and actors	in Academic and Industry							
•	•		vith industry and governments at regional, national							
			ts on the educational curricula in an effective way							
		•	in Academic and Industry							
•	•		ith industry and governments at regional, national							
			ts on the educational curricula in an effective way							
• Emphasis	e design for A	M and special considera	ations (overhangs/ supports/solid structures or							
latticed/pos	t-processing r	requirements required f	or AM)							
• Ensure th	at AM curricu	la addresses employer's	s needs, address multidisciplinarity and includes both							
			cesses, materials, design for AM, safety, etc.) and							
	-		erent levels: management, engineers, shop floor, etc.							
	•	•	sing not only in preparing a new workforce but also							
-	-	one to work and implem								
		of teaching: For example	e practical modules held at industrial or specialized							
R&D centre										
			vledge and experience for workers seeking							
	employment p	•	rials and courses (certification by professional							
		ining to higher educatio								
 Offer support for collaborative and community-oriented maker spaces/events that, as informal learning environments, promote awareness of AM among society 										
 Introduce AM to curricula of Elementary and High schools in all EU 										
 CSA for promotion of AM technologies to wide public 										
•	blab initiative	-	•							
• •			npetition for AM design (free form design) for young							
• AM promotion through the organization of competition for AM design (free form design) for young										
people (high school pupils, students) and public promotion of their design										

Action name	Develop AM specific educational and training modules both through linking with "regular" high education curricula (engineering, business schools) and training on the job approaches						
Ongoing & recent	projects	already	SA	AMT SUDOE, LA	SIMM, Kraken, Skillman , ADMIRE; CLLAIM,		
(partially) address	ing the g	gaps	30	OPRISM; META	LS		
Current TRL	NA			Target TRL	NA		
Type of Action		CSA/ERANET	-				
High expected imp	oact	<u>Economic &</u>	& Industrial				
on:		Increased p	product quality and performances				
		Potential fo	or EU leadership				
		Increased p	oro	duction capacit	ty		
		Environment & Social					
		Increased number of jobs					
		Jobs reshoring in EU					
		Material re	sol	urce saving			

Action name	Innovativ	ve AM sustain	able busi	iness mo	dels		
Action n. 3		Secto			Non-Technical Cross-Cutting		
Description of the challenge (current gap)							
				w decisio	on makers what is possible with AM and		
					ing, for production processes). Accessibility		
					st effective. There is need to understand the		
effect of new su							
We should not o	confuse that	t AM is often	not the n	need, but	rather the means.		
It is important to	o learn hov	v to incorpora	te presur	nption a	nd (autonomous) co-creation in business		
models as well a	as find sust	tainable busin	ess mode	els for dir	ect manufacturing and distributed		
manufacturing.	The genera	al idea of rede	sign of pa	art is pro	bably a good route for promoting AM.		
Proposed activi	ties						
	•				ctures. Identification of appropriate use		
			d develo	pment of	f practical solutions for the production and		
distribution of t	•						
			tion, reali	ising curr	ent bottlenecks and best practices for		
transferability o		-					
-	-	ufacturing pla	atforms a	nd matei	rials to evaluate suitability as an alternative		
manufacturing s							
		•	-		ycle cost analysis approach. Ability to benefits arising from its use during the		
lifecycle.			ining cost	vs. the t	sellents ansing norm is use during the		
 Consideration 	of 3D nart	s models acce	ess and IP	Rs nossił	ale issues		
 Assessment o 	•			•			
					ble attitude towards temporary parts.		
					s, especially in the case of function-		
integrated struc							
• Creation of a	decision-su	pport tool abl	le to quar	ntify ben	efits of introduction of AM during the		
lifecycle of a pro	oduct						
Ongoing & rece	nt projects	already	HyProCe	ell, ManS	YS; AMable, CAxMan, PARADDISE, IMRAM,		
(partially) addre	essing the g	gaps	AMable,	, BOREAL	IS, SYMBIONICA, 4DHYBRID, SMARTIC,		
				IS, BAMC	DS		
Current TRL	NA		Targ	et TRL	NA		
Type of Action		CSA/IA					
High expected i	mpact	Economic 8					
on:							
Increased production capacity Reduced time to market							
		Environme					
		Jobs resho	-				
		Material re Increased r		-			
		increased r	iumper 0	JODS			

	Action name Safety issues on AM (with focus on metal AM): need for safety assessment, safety management and guidelines and education on EHS challenges							
Action n. 4	Secto	n Non-Technical Cross-Cutting						
Description of the challen	ge (current ga	p)						
Need for Rules/Guidelines/ Education on EHS challanges with AM. In relation with protection of Machine Operators: there is a need for standards to address EHS in the AM process. Typical hazards to be addressed include: guarding from moving parts that are not protected from contact; chemical handling (liquids, powders, wires); air emissions (dusts, vapors, fumes); noise (cleaning apparatus); electrical (water wash systems, electro-static systems); flammable/combustible cleaning materials; solid waste; laser use (sintering processes); and UV light (may require eye and skin protection based on design)								
 Proposed activities Recommend creating a standard addressing EHS issues relative to additive machines (power, laser, safe handling, air quality, etc.). Physical measurement of operator exposure to AM materials is one of the most critical needs and can be leveraged from existing industry standards and guidelines. In case of use of nanomaterials during the AM process safe by design approach is relevant in respect of European Nanosafety Cluster Understanding the potential of the operation to generate fine powders, the exposure and the effect of volatile powders on the individual and surrounding environment during the life cycle. Develop sufficient protective equipment around AM (ventilation, powder handling stations, etc.) Development of technical solutions to minimize contact between operator and material (e.g. Solvent Damp Powders - There should be sufficient solvent that the powder cannot form a dust cloud; Large Particle Size Materials and Blends - Concentration of fine powder within the bulk of the material) Exploring the potential for charging powders into Flammable Atmospheres Promote education and training activities related to EHS challenges in AM with focus on powder 								
Ongoing & recent projects	-	FAST, DIMAP, BOREALIS, 4DHYBRID, BOREALIS						
(partially) addressing the g	gaps							
Current TRL 4-5	1.0	Target TRL 6-7						
Type of Action	IA Essentia 8) in developing						
High expected impact on:	<u>Economic & Industrial</u> Increased product quality and performances Increased business generated Increased number of private companies involved <u>Environment & Social</u> Better personal health Jobs reshoring in EU Material resource saving							

Action name	e	Promotir	ng crowdsourcing solutions for design and manufacturing					
Action n.	5		Sect	or		Non-Technical Cross-Cutting		
Description	of th	e challen	ge (current ga	ip)				
There is nee	d for	self-susta	ainable co-cre	ation pla	tform wi	vith easy to use softwares		
Proposed ad	ctiviti	ies						
 Connect d 	lata a	ind availa	ble tools and p	olatform	s, integra	ating existing applications, systems and		
enterprise p	roce	sses.						
 Involveme 	ent of	f software	companies/ o	computa	tional ser	ervices providers.		
Ongoing & r (partially) a		• •	-	Kraken				
Current TRL		NA		Tar	get TRL	NA		
Type of Acti	ion		CSA					
High expect	ed in	npact	Economic a	& Indust	rial			
on:			Reduced ti	Reduced time to market				
	Inc		Increased i	Increased number of private companies involved				
Increased		Increased	sed business generated					
Enviro		<u>Environme</u>	Environment & Social					
Jobs rest		Jobs resho	shoring in EU					
			Increased i	number	of jobs			
			Better qua	lity of lif	e			

Action n. 6		Sect	ar		Non-Technical Cross-Cutting			
Description of the challenge (current gap)								
AM is a fast developing technology constantly changing, and educational contents and training								
			•		a sustainable way to ensure the system			
-	•		•		icational partnerships are needed to delive			
					ry aspects. Specific focus should be given or			
21st century skills	-			•				
- Deep learnin		Al in educatio	n;					
- Communicat	on & col	aboration;						
- Industry 4.0,	big Data,	-AI/Robotiza	tion and I	oT.				
Proposed activitie	es							
 Creation of a Eu 	ropean n	etwork for Al	A educatio	on as a	central reference hub for training and			
educational purpo		•						
-		-			tion system for AM, covering all European			
		-			address the needs for training and			
	-				ls. Consideration also of different training			
		users sectors	industrial	, educa	tional and consumers in order to generate			
suitable support n								
-	ce system	n to guarante	e the quali	ity of th	e training provided along with standard be			
practices	ailiti aa ak				torials and other contents provided to such			
 Resource and radiulation and sustain AM education 			-	rsema	terials and other contents provided to creat			
		•		mong	educational establishments and practices in			
companies/R&D c		ersy teachers e	Achiange a	intong e	educational establishments and practices in			
		ndustrial char	nbers and	organie	sation of training days/seminars and			
practical worksho				or Burns				
 Dialogue with a 	•	ence HEI Net	works to d	levelop	new curricula			
 Involvement on 	• •			•				
• Focus ALSO on v			-					
Ongoing & recent	projects	already	SAMT SU	DOE,				
(partially) address	sing the g	aps	LASIMM	, Skillm	an, ADMIRE; CLLAIM; AMable, 3DPRISM;			
			METALS					
Current TRL	NA			et TRL	NA			
Type of Action		CSA/ERANE						
High expected impact Economic &								
on: Potential f								
Reduced					ad parformancos			
	•	•	•	nd performances				
		Environme		<u>ı</u>				
		Jobs reshoring in EU						
Increased number of jobs								

Action n. Peter awareness of IP issues Action n. 7 Sector Non-Technical Cross-Cutting Description of the challenge (current gap) Intellectual property implications of AM should be reviewed to avoid that it hinders. Implications of AM on the intellectual property system should be mapped and monitored to avoid that IPRs hinder innovation. Short term key IPR issues relate to AM designs and copyrights. Designs could be stolen and thus, reproduced. Open innovation strategies should be further exploited. There should be greater awareness in the IP law community on how AM is impacting client's business models Among current challenges there are also: -need for digitalization of patent law (Not only copyright) + Digitalization of design rights and trademarks -Territoriality of IPRs vs. Global nature of digitalization - Protection of information included in CAD file via exclusive rights such as IPRs - Legal Nature of CAD file (Software? Work of art? Database? something else? - IPR protection of new materials like for Bioprinting - Limits to apply patent law due to possible ethical issues involved - Enforcement issues of IPRs related to digitalization - Use of technical protection measures (e.g. blockchain) to increase efficiency of enforcement of IPRs Proposed activities • Development of a strategy to identify possible IP rights and issues that may arise taking into account the interests of all stakeholders • New forms of protection mechanisms; clearer guidance on defining whether a CAD file cou		evelopi	ng and promo	oting effe	tive int	ellectual properties strategies in AM and		
Description of the challenge (current gap) Intellectual property implications of AM should be reviewed to avoid that it hinders. Implications of AM on the intellectual property system should be mapped and monitored to avoid that IPRs hinder innovation. Short term key IPR issues relate to AM designs and copyrights. Designs could be stolen and thus, reproduced. Open innovation strategies should be further exploited. There should be greater awareness in the IP law community on how AM is impacting client's business models Among current challenges there are also:								
Intellectual property implications of AM should be reviewed to avoid that it hinders. Implications of AM on the intellectual property system should be mapped and monitored to avoid that IPRs hinder innovation. Short term key IPR issues relate to AM designs and copyrights. Designs could be stolen and thus, reproduced. Open innovation strategies should be further exploited. There should be greater awareness in the IP law community on how AM is impacting client's business models Among current challenges there are also: -need for digitalization of patent law (Not only copyright) + Digitalization of design rights and trademarks -Territoriality of IPRs vs. Global nature of digitalization - Protection of information included in CAD file via exclusive rights such as IPRs - Legal Nature of CAD file (Software? Work of art? Database? something else? - IPR protection of new materials like for Bioprinting - Limits to apply patent law due to possible ethical issues involved - Enforcement issues of IPRs related to digitalization - Use of technical protection measures (e.g. blockchain) to increase efficiency of enforcement of IPRs Proposed activities • Development of a strategy to identify possible IP rights and issues that may arise taking into account the interests of all stakeholders • New forms of protection mechanisms; clearer guidance on defining whether a CAD file could have IPR protection • Involvement IPR related entities as EPO (European Patent Office) • Learn lessons from the past; look at past digitisation waves and avoid doing the same mistakes • Joint tech/non-tech actions aiming at raising awareness • Solving IP issues by implementing new business models Ongoing & recent projects already (partially) addressing the gaps Current TRL NA Target TRL Type of Action Righ expected impat on:	Action n. 7		Sect	or		Non-Technical Cross-Cutting		
AM on the intellectual property system should be mapped and monitored to avoid that IPRs hinder innovation. Short term key IPR issues relate to AM designs and copyrights. Designs could be stolen and thus, reproduced. Open innovation strategies should be further exploited. There should be greater awareness in the IP law community on how AM is impacting client's business models Among current challenges there are also:	Description of the challenge (current gap)							
IPRs Proposed activities Operation of a strategy to identify possible IP rights and issues that may arise taking into account the interests of all stakeholders New forms of protection mechanisms; clearer guidance on defining whether a CAD file could have IPR protection Involvement IPR related entities as EPO (European Patent Office) Learn lessons from the past; look at past digitisation waves and avoid doing the same mistakes Joint tech/non-tech actions aiming at raising awareness Solving IP issues by implementing new business models Ongoing & recent projects already (partially) addressing the gaps Current TRL NA Target TRL Night expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased IPR protection Environment & Social Material resource saving Jobs reshoring in EU	Intellectual property implications of AM should be reviewed to avoid that it hinders. Implications of AM on the intellectual property system should be mapped and monitored to avoid that IPRs hinder innovation. Short term key IPR issues relate to AM designs and copyrights. Designs could be stolen and thus, reproduced. Open innovation strategies should be further exploited. There should be greater awareness in the IP law community on how AM is impacting client's business models Among current challenges there are also: -need for digitalization of patent law (Not only copyright) + Digitalization of design rights and trademarks -Territoriality of IPRs vs. Global nature of digitalization - Protection of information included in CAD file via exclusive rights such as IPRs - Legal Nature of CAD file (Software? Work of art? Database? something else? - IPR protection of new materials like for Bioprinting - Limits to apply patent law due to possible ethical issues involved - Enforcement issues of IPRs related to digitalization							
 Development of a strategy to identify possible IP rights and issues that may arise taking into account the interests of all stakeholders New forms of protection mechanisms; clearer guidance on defining whether a CAD file could have IPR protection Involvement IPR related entities as EPO (European Patent Office) Learn lessons from the past; look at past digitisation waves and avoid doing the same mistakes Joint tech/non-tech actions aiming at raising awareness Solving IP issues by implementing new business models Ongoing & recent projects already (partially) addressing the gaps Current TRL NA Target TRL Increased product quality and performances Potential for EU leadership Increased IPR protection Environment & Social Material resource saving Jobs reshoring in EU 	IPRs							
account the interests of all stakeholders New forms of protection mechanisms; clearer guidance on defining whether a CAD file could have IPR protection Involvement IPR related entities as EPO (European Patent Office) Learn lessons from the past; look at past digitisation waves and avoid doing the same mistakes Joint tech/non-tech actions aiming at raising awareness Solving IP issues by implementing new business models Ongoing & recent projects already (partially) addressing the gaps Current TRL NA Target TRL Type of Action CSA High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased IPR protection Environment & Social Material resource saving Jobs reshoring in EU	•							
 Involvement IPR related entities as EPO (European Patent Office) Learn lessons from the past; look at past digitisation waves and avoid doing the same mistakes Joint tech/non-tech actions aiming at raising awareness Solving IP issues by implementing new business models Ongoing & recent projects already (partially) addressing the gaps Current TRL NA Target TRL Type of Action CSA High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased IPR protection Environment & Social Material resource saving Jobs reshoring in EU 	account the interesNew forms of pro	ts of all	stakeholders		-			
 Learn lessons from the past; look at past digitisation waves and avoid doing the same mistakes Joint tech/non-tech actions aiming at raising awareness Solving IP issues by implementing new business models Ongoing & recent projects already (partially) addressing the gaps Current TRL NA Target TRL Type of Action CSA High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased IPR protection Environment & Social Material resource saving Jobs reshoring in EU 	•	related	entities as FP	O (Europe	an Pate	ent Office)		
 Joint tech/non-tech actions aiming at raising awareness Solving IP issues by implementing new business models Ongoing & recent projects already (partially) addressing the gaps Current TRL NA Target TRL Type of Action CSA High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased IPR protection Environment & Social Material resource saving Jobs reshoring in EU 				· ·		-		
 Solving IP issues by implementing new business models Ongoing & recent projects already (partially) addressing the gaps Current TRL NA Target TRL Type of Action CSA High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased IPR protection Environment & Social Material resource saving Jobs reshoring in EU 		-	-	-		_		
Ongoing & recent projects already (partially) addressing the gaps Current TRL NA Type of Action CSA High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased IPR protection Environment & Social Material resource saving Jobs reshoring in EU			-	-				
Current TRL NA Target TRL Type of Action CSA High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased IPR protection Environment & Social Material resource saving Jobs reshoring in EU		· ·						
Type of Action CSA High expected impact on: Economic & Industrial Increased product quality and performances Increased product quality and performances Potential for EU leadership Increased IPR protection Environment & Social Material resource saving Jobs reshoring in EU Increased	(partially) addressi	ng the g	gaps					
High expected impact Economic & Industrial on: Increased product quality and performances Potential for EU leadership Increased IPR protection Environment & Social Material resource saving Jobs reshoring in EU	Current TRL	NA		Targe	et TRL			
on: Increased product quality and performances Potential for EU leadership Increased IPR protection Environment & Social Material resource saving Jobs reshoring in EU Increased IPR	Type of Action		CSA					
Potential for EU leadership Increased IPR protection <u>Environment & Social</u> Material resource saving Jobs reshoring in EU	High expected imp	act	Economic a	& Industric	<u>al</u>			
Potential for EU leadership Increased IPR protection <u>Environment & Social</u> Material resource saving Jobs reshoring in EU	on:		Increased	product qu	uality ar	nd performances		
Increased IPR protection <u>Environment & Social</u> Material resource saving Jobs reshoring in EU								
Environment & Social Material resource saving Jobs reshoring in EU					•			
Material resource saving Jobs reshoring in EU				•				
Jobs reshoring in EU					-			
					0			
				•	iobs			

Action nam	ie P	romotin	g the creatio	n of a sui	table IP f	framework		
Action n.	8		Sect	or		Non-Technical Cross-Cutting		
Description	Description of the challenge (current gap)							
Currently tl	nere is r	no case l	aw about AM	/ 3D-Prin	ting in Eu	urope. Knowing the real implications of AM		
will take so	me time	e and it v	will most likel	y happen	that legi	islation comes after the act. On the one		
hand, it is i	mportar	nt to und	derstand how	the exist	ing IP fra	mework can be used in a suitable manner.		
On the oth	er hand,	, the IP s	system might	need to s	shape itse	elf to be able to meet the needs of AM		
technology	•							
Proposed a	ctivities	5						
•	•		-	-		gulated differently, and liability aspects		
 To explor 	e the ne	eed of re	egulating AM	specifical	lly and se	parately		
		•	•	of current	protection	on tools : copyright, Patents, Design Rights,		
Utility Mod	els, Tra	de Secre	ets					
			ress challenge					
		of IPRs	(Status Quo)	can curre	ently app	ly to CAD Files + need for new ad hoc types		
	ools							
	•		should we "a	•				
· ·		•	focusing on i	P challen	ges relate	ed to AM		
Ongoing & (partially) a			-	CAxMar	n, LASIMI	M		
Current TR	L	NA		Targ	et TRL			
Type of Act	ion		CSA					
High expec	ted imp	act	<u>Economic a</u>	& Industri	ial			
on:			Potential f	or EU lea	dership			
Increased IPR protection								
Increased number of private companies involved						companies involved		
	Environment & Social							
			Material re		•			
			Increased		-			
			Jobs resho	ring in EL	J			

HEALTH

Action name Modelling r	nethods for interaction be	tween materials and livi	ing tissue and design								
software fo	r AM product customizatio	on and data managemer	nt								
Action n. 1		Sector	Health								
Description of the challenge	(current gap)										
Modelling can be an effective	Modelling can be an effective tool to test advanced, breakthrough research solutions. As an example,										
fine mesh structures of AM promote osteointegration in implants . Therefore, analysis and simulation											
of cell responses and cell tissue growth behavior is required											
Proposed activities											
 Increase research and know 	•	· ·	n behaviour.								
 Data management of mode 		-									
 Investigate the robustness 	e 1	•									
Converging biotechnology,		xpertise									
Material models for contro	lled drug release										
Value chain segments	x Modelling	Post Proce	255								
	x Design	Product									
	Material	End of Life	2								
	Process	Complete	VC								
Current TRL 3-4		Target TRL	5-6								
Type of Action	RIA										
Target Products	✓ Medical Implant	S									
	✓ Living Tissues &	Organs									
High expected impact on:	Economic & Industrial										
	Increased product quality and performances										
	Increased number of private companies involved										
	Environment & Social										
	Better personal health										
	Better quality of life										
	Material resource savir	ng									

Action name		naterials suitable for AM w n at lower costs	rith focus on materi	al variety and large						
Action n.	2		Sector	Health						
	-	(current gan)	Sector	Health						
-	Description of the challenge (current gap) Novel bio-functional materials capable of supporting the use of printing in current and novel human									
		are needed. Materials for m								
-	• •		• •							
	lements, chirurgical instruments) must meet high demands on biocompatibility and reliability. It is normalized normalized provided the goal (cost-benefit analysis). Interdisciplinary									
	aspects and convergence of disciplines should be addressed.									
Proposed activity	-									
•		s for bio-functional powder	production.							
	•	o-functional powder use								
		hine concepts e.g. for grade	ed material properti	es and multi material						
combinations										
 Development 	of new com	posites based on polymer/	ceramic and cerami	cs reinforced metal (metal						
matrix composit										
		esium, copper, biodegradab								
	• •	and required performance	• •							
		on comparison with traditic	onal materials							
Value chain seg	ments	Modelling	Post	Process						
		x Design	Prod	uct						
		x Material		of Life						
		x Process	Com	plete VC						
Current TRL	4	5	Target TRL	6-7						
Type of Action		IA								
Target Products	;	 ✓ Medical Implan 								
		✓ Living Tissues &	-							
		-	✓ Surgical Guides, Tools & Models							
		 ✓ Other Customized Products 								
		✓ Other Dental Products								
High expected i	mpact on:									
		Increased product quality and performances Increased business generated								
		Increased number of private companies involved								
		Environment & Social		lioned						
		Material resource savi	ng							
		Better personal health	-							
		Better quality of life								

Action name	Validat	ion of	mechanical and thermal	properties o	f existing mat	erials	
Action n.	3			Secto	or	Health	
Description of th	e challe	nge (o	current gap)				
Material quality of	control a	and hi	gh reliability materials are	key issues fo	or medical app	lications that	
require validatior	require validation. As basic requirement is fundamental to develop material targeting to at least						
replicate the mechanical and biocompatible characteristics of traditional implantable parts.							
Proposed activiti							
			rt needed and population	•	nding databas	es	
			prientation on mechanical				
		-	ittle fracture is a key prope	erty to be as	sessed, i.e. fra	cture toughness	
			ne fracture property				
		•	ove quality across batches				
			achine and feed-stock hand	dling, round-	robin testing	and mapping of	
process paramete			· ·				
		heat	treatment and post proces	ssing operation	ons		
Value chain segn	nents		Modelling Post Process				
			Design Product				
			x Material End of Life				
			Process	Complete VC			
Current TRL		5-6		Target TRL		7-8	
Type of Action			IA				
Target Products			 Medical Implants 				
			✓ Living Tissues & C	•			
			 Assistive & Prostl 				
			✓ Surgical Guides, 1		els		
			✓ Other Dental Pro	ducts			
High expected im	pact or	า:	<u>Economic & Industrial</u>				
			Increased product quali		rmances		
Potential for EU leadership							
Reduced time to market							
			Environment & Social				
			Material resource saving				
			Increased number of jo	bs			
	Better environment						

Action name V	/ascularia	ation and innervation of t	ion and innervation of tissues through biofabrication				
Action n.	4		Sector	Health			
Description of the	Description of the challenge (current gap)						
In biofabrication, a lot of effort is placed to create vascularized tissue constructs. Innervation is often							
forgotten, despite	being als	o a very important netwo	rk to maintain tissue fun	ctionality.			
Proposed activitie	S						
 Exploration of m 	naterials a	nd biological factors to cre	eate conditions similar to	o human physiology			
 Converging biote 	echnolog	, engineering and medica	l expertise				
Value chain segme	ents	x Modelling	Post Pro	ocess			
		x Design	Product	t			
		x Material	End of I	_ife			
		x Process	Comple	te VC			
Current TRL	1	-2	Target TRL	3-4			
Type of Action		RIA					
Target Products		✓ Living Tissues	✓ Living Tissues & Organs				
		✓ Pharmaceutic	✓ Pharmaceutical Products				
High expected imp	pact on:	Economic & Industric	Economic & Industrial				
		Potential for EU lead	•				
			Increased number of private companies involved				
		Increased business	Increased business generated				
			Environment & Social				
		Better personal heal	th				
		Better quality of life					
		Increased number of	f jobs				

Action name			sses for fabrication of 'smart scaffolds' and for construction of 3D d tissue models				
Action n.	5			Secto	or	Health	
Description of t	Description of the challenge (current gap)						
	One of the key issue is the knowledge of biological processes (epistemiology) before taking actions. Then, the production of parts for medical applications requires special processes and equipment						
Proposed activit		parts i		quires specia	ai processes a	nu equipment	
		la indu	strial fabrication and imple	montation	for modical ar	anlications	
•			-material porous structure		•	oplications	
• •			printing of biocompatible			ti-material and	
printing of living	• •	Joi ting	printing of biocompatible	labrication			
Value chain seg	ments		x Modelling		Post Process	5	
			x Design		Product		
			x Process		Complete VC		
Current TRL		2-3		Target TRL		4-5	
Type of Action			IA				
Target Products	5		✓ Living Tissues & Organs				
			✓ Pharmaceutical Products				
High expected i	mpact o	n:	Economic & Industrial				
			Increased product quality and performances				
			Potential for EU leaders	•			
			Increased number of pri	vate compa	nies involved		
			Environment & Social				
			Better personal health				
			Better quality of life				
			Jobs reshoring in EU				

		I twin technologies for custo			
Action n. 6	l devices and prediction	n of long-term clinical perfori Sector	mance Health		
	ngo (current gan)	Sector	riculti		
Description of the challenge (current gap) Advanced modelling tools combining various medical imaging methods with modelling and design to support AM production are needed for efficient use of AM. Knowledge of long term clinical performance of AM implants will help to optimise their efficacy. Proposed activities • Compilation of specifications and identification of current capability gaps in available software • Development of scanning and surgical methods; for example the development of multi-physics, multiscale modelling tools to ensure functionality and safety of parts and increase the understanding of how it will perform after surgery (from grain size or molecule to component level) • Development of file compatibility between imaging and AM modelling software • Development of modelling tools that recognise how implants will perform after surgery (from the tissue to the material and implant) • Experimental testing of implants for corrosion, fatigue and wear • Long term clinical observations that aim to understand the health related performance. This should use a case approach in which the full financial impact on the value chain is detailed. To include participation of all stakeholders (medical, organisational, financial, insurance, patients supply etc.) • Apply digital twin technologies to constantly improve performance and monitor behaviour					
Value chain segments	xModellingxDesignMaterialxProcess	x Design Product Material End of Life			
Current TRL	3-4	Target TRL	5-6		
Type of Action	RIA				
Target Products	 ✓ Medical ✓ Living Tis ✓ Surgical 	✓ Medical Implants			
High expected impact or	Increased prod Increased prod Reduced time t <u>Environment &</u> Better persona	Economic & Industrial Increased product quality and performances Increased production capacity Reduced time to market Environment & Social Better personal health Better quality of life			

	d multi-material products wit and prosthetic devices	ulti-material products with improved functionalities focusing on prosthetic devices				
Action n. 7		Sector	Health			
Description of the challen	Description of the challenge (current gap)					
Materials for introducing new functionalities and/or producing inte-grated electronics to broaden the						
application of AM	application of AM					
Proposed activities						
•	parts by embedding sensors a					
	d nanotechnologies to improve	e material properties;				
Value chain segments	Modelling	x Post Proc	cess			
	Design	x Product				
	x Material	End of Lif	fe			
	x Process	Complete	e VC			
Current TRL 2	2-3	Target TRL	4-5			
Type of Action	RIA					
Target Products	✓ Medical Implants					
	✓ Living Tissues & C	Organs				
	✓ Assistive & Prosth	✓ Assistive & Prosthetic Devices				
	-	✓ Surgical Guides, Tools & Models				
	✓ Other Dental Pro	ducts				
High expected impact on:		Economic & Industrial				
	Increased product qualit	<i>·</i> · ·				
		Potential for EU leadership				
Increased business generated Environment & Social						
	Jobs reshoring in EU Increased number of jo	hc				
	Material resource saving					

Integ	ration o	f life cycle approach in the	e health sector: AM p	oilots operating with		
Action name close	d loop r	ecycling, reuse of precious	materials, use of su	stainable materials		
(inclu	iding bio	o-based ones).				
Action n. 8			Sector	Health		
Description of the cha	llenge (o	current gap)				
Recovery and reuse of	expensi	ve AM materials without c	ompromising reliabili	ty and safety of		
produced critical parts	. Use of	sustainable materials (incl	uding bio-based one	s) whenever		
appropriate.Linked with cross-cutting gaps.						
Proposed activities						
		operating with closed loop		•		
		es through demonstration		e-use of materials, use of		
	•	ent of recyclable materials	-			
•		conformity assessment pro		-		
•		ality, safety and security of	the designs, (recycle	ed) material,		
	-	es in the Medical arena				
	-	and life-cycle cost analysis				
		pact on the value chain w	-	cycled materials,		
<u>v</u>	ents and	financial impact of those r	ISKS			
Value chain segments		Modelling X Post Process				
		Design	x Product	:		
		Material	x End of Life			
		x Process	Comple	Complete VC		
Current TRL	2-3		Target TRL	4-5		
Type of Action	2 5	RIA		чJ		
Target Products		✓ Medical Implants				
laiget i ouucio		 ✓ Assistive & Prosthetic Devices 				
✓ Surgical Guides, Tools & M						
✓ Other Dental Products						
High expected impact	on:	Economic & Industrial				
		Potential for EU leaders	nip			
		Increased number of private companies involved				
		New types of ventures s				
		Environment & Social				
		Material resource saving	5			
		Reduction of CO2 emission	on			
		Better environment				

Action name B	iological st	ructures development for	ructures development for drug testing					
Action n.	9		Sector	Health				
Description of the	challenge	current gap)						
Biological structure	es that can	mimic key biological function	ons can help improvir	ng drug's development				
and replacing anim	and replacing animal testing							
Proposed activities	5							
-		d biological factors to creat		o human physiology				
		engineering and medical ex						
		technologies to reach hum	an scale dimensions					
Value chain segme	ents	x Modelling	Post Pro	ocess				
		x Design	Product					
		x Material	End of Life					
		x Process Complete VC						
Current TRL	2-3		Target TRL	4-5				
Type of Action		RIA						
Target Products		✓ Living Tissues & Organs						
		✓ Pharmaceutical Products						
High expected imp	act on:	Economic & Industrial						
		Potential for EU leadership						
		Increased number of pr	•	lved				
		New types of ventures s	started					
		<u>Environment & Social</u>						
		Material resource savin	g					
		Better environment						
		Increased recycling						

Action name Nove	el exosko	eletons developed by addi	tive manufacturing				
Action n. 10)		Sector	Health			
Description of the cha	llenge (current gap)					
Personalised prototyp	es for di	sabled patients (focusing o	on children) for examp	ole to help carrying			
heavy weights.							
Proposed activities	Proposed activities						
 Optimisation of mat 	erials ar	nd technologies and demor	nstration in working p	rototypes.			
		oring and artificial intellige	nce aspects.				
Value chain segments		Modelling	x Post Pro	ocess			
		Design	x Product				
		x Material	End of Life				
		x Process	Complete VC				
Current TRL	2-3		Target TRL	4-5			
Type of Action		RIA					
Target Products		✓ Assistive & Prosthetic Devices					
High expected impact	on:	Economic & Industrial					
		Potential for EU leaders	hip				
		Increased IPR protection					
		Increased product quality and performances					
		Environment & Social					
		Better personal health					
		Better quality of life					
		Jobs reshoring in EU					

Action name C	Organ Bio	printing						
Action n.	11		Sector	Health				
Description of the	challeng	e (current gap)						
Bioprinting hold th	ne promis	e to be a game changer	for the fabrication of o	organ replacements. Yet, up				
to today only very simple and rudimentary small models have been developed. To explore the full								
potential of organ bioprinting, functional full organ or (as minimum) organ patches should be								
developed								
Proposed activitie								
•		•		lar to human physiology				
00	•	, engineering and medi	•					
		n technologies to reach	human scale dimensio	ons				
Value chain segme	ents	x Modelling	x Pos	st Process				
		x Design	x Pro	oduct				
		x Material	Enc	d of Life				
		x Process	Cor	nplete VC				
Current TRL	2	-3	Target TRL	4-5				
Type of Action		RIA						
Target Products		 Living Tissu 	✓ Living Tissues & Organs					
High expected imp	oact on:	Economic & Indust	Economic & Industrial					
			Increased number of private companies involved					
		Increased product						
		Increased busines	•					
		Environment & So						
		Material resource	•					
		Better personal he						
		Better quality of li	fe					

Action name			modelling the whole body and its evolution over time, supported by nd 3D prototyping, for optimized prostheses					
Action n.	12	5mg a		Secto		Health		
Description of th		nge (o	current gap)					
-			ies (computed-tomograp	hy, magnetic	resonance et	c.) coupled with 3D		
-	prototyping may lead to virtual and physical reconstruction of human body and its evolution over							
time from youth	time from youth to old age. Coupling such systems with modelling and advanced parametric design							
has the potential	has the potential to develop optimised prostheses.							
Proposed activiti	ies							
 Perform long-term studies /have access to medical data with the evolution of the human body over time and develop parametric design and modelling; Demonstrate the potential of the tool in critical prostheses (e.g. Cardiovascular or orthopaedic devices). 								
Value chain segn	nents		x Modelling		Post Process			
			x Design		Product			
			Material End of Life					
			Process		Complete VC	2		
Current TRL		1-3		Target TRL		2-4		
Type of Action			RIA					
Target Products			✓ Medical Implants					
			✓ Living Tissues & Organs					
			✓ Pharmaceutical	Products				
High expected in	npact or	า:	Economic & Industrial					
			Increased product qual		rmances			
			Increased business ger					
			Increased number of p	rivate compai	nies involved			
			Environment & Social					
			Better personal health					
			Better quality of life					
	Material resource saving							

AEROSPACE

Action name De	velop	or optimize modelling tools f	for process, material ar	nd topology optimization.			
Action n.	1		Sector	Aerospace			
Description of the c	hallen	ge (current gap)					
Design optimization	in con	bination with process reliab	pility: there is need for	:			
- full integration of	AM pr	ocess modelling in state of t	he art software system	ns for efficient and			
optimized modelling	g.						
	- evaluation of correlation between process parameteres and part properties, understanding how						
defects form and wh	ny (adv	anced melt pool modelling	and simulation is nece	ssary).			
Proposed activities							
 Address simulation 	n of th	e thermal conditions in the a	aerospace part in com	bination with topological			
optimization of the s	suppoi	t structure and fixtures					
 Conduct a state-or 	f-art lit	erature survey of existing m	nodels and models that	are currently being			
developed. Integrati	ion of s	tate of the art tools emerging	ng from FP7 and H202	0 programs			
• Encourage modell	ing usi	ng machine parameters as e	entry parameters and b	ouild orientation, and			
establish links with r							
 Funding of HPC re 	source	S					
 Publish Public Mat 	terial p	roperties database relevant	in AM				
-		Academia to Industry					
 Web-based platfo 	rm of I	eference test models includ	ling experimental resu	lts. A rating of the models			
should be possible.							
Value chain segmen	nts	x Modelling	x Modelling Post Process				
		X Design	x Design Product				
		Material	Material End of Life				
		Process	Process Complete				
Comment TDI			·				
Current TRL		5-6	Target TRL	7			
Type of Action		RIA/CSA					
Target Products		✓ Turbine Parts /	•				
			✓ Small aircraft wings and fuselage and their components				
			✓ Other complex parts				
			 ✓ Components of large aircraft wings and fuselage ✓ Spare parts & repair 				
			 ✓ Spare parts & repair ✓ Concert modelling, prototyping and advanced moulds 				
 ✓ Concept modelling, prototyping and advanced mo ✓ Niche, low volume parts 							
		✓ Embedded Elec	•				
High expected impa	nct on:	Economic & Industria					
ingit expected impa			<u>'</u> ality and performance	c			
		Increased production		J			
		Reduced time to mar					
		Environment & Social					
		Material resource sav					
		Reduction of CO2 em	-				
		Better environment					
		Detter environment					

	emonstrati esign	on of simplified assembly of complex parts through optimzed AM					
Action n.	2		Sector	Aerospace			
Description of the o	challenge (current gap)					
Advanced design to	ols to help	utilize the advantages of A	M				
Proposed activities	Proposed activities						
		ation methodologies in the	design phase to mov	e from feature-based to			
function-based desi	•						
-	sign constra	aints (overhangs, etc)and	rules into topology o	ptimization to minimize			
supports	- · · - · · · · · · · ·						
		nization approaches leadin	g to CAD files for com	iplex products			
Value chain segme	nts	Modelling	Post Pro	ocess			
		x Design	Product				
		Material	End of L	ife			
		Process Complete VC		tevC			
Current TRL	6		Target TRL	7			
Type of Action		IA					
Target Products		✓ Turbine Parts / Engine					
		✓ Other complex parts					
		✓ Components of large aircraft wings and fuselage					
		✓ Spare parts & repair ✓ Concept modelling, prototyping and advanced moulds					
		 Concept modelling, prototyping and advanced moulds Niche, low volume parts 					
		 Kitche, low volume parts ✓ Embedded Electronics 					
High expected impa	act on:	Economic & Industrial					
0 1 1 1 1 1		Increased product quality	ty and performances				
		Increased production capacity					
		Reduced time to market	t				
		Environment & Social					
		Material resource saving	•				
		Reduction of CO2 emiss					
		Increased number of jo	bs				

Action name Quality	and consistency of powder pr	oduction		
Action n. 3		Sector Ae	rospace	
Description of the challe				
Identification of powder	properties that are critical to o	btain a "good" part during proce	ssing in AM	
		tc). Moreover, having the right i	•	
	-	n compliance. Understanding of	the limits of	
	ected with automotive action n	n. 2		
Proposed activities				
-		n order to have a well-controlled		
		nandling including recycling of po		
-		ve processes for powder product	tion with	
better distribution size co				
	and validation criteria which ca	an depend on each machine (fee	ding, laser	
source, etc.)				
Value chain segments	Modelling	Post Process		
		Product		
	x Material End of Life			
	x Process	Complete VC		
Current TRL	6	Target TRL 7		
Type of Action	IA			
Target Products	✓ Turbine Parts / I	Engine		
✓ Small aircraft wings and fuselage and their components			onents	
✓ Other complex parts				
✓ Components of large aircraft wings and fuselage				
	✓ Spare parts & repair			
 Concept modelling, prototyping and advanced moulds 			oulds	
 ✓ Niche, low volume parts 				
	✓ Embedded Elect	tronics		
High expected impact or				
	Increased product quality and performances			
	Increased production capacity			
		Reduced time to market		
	Environment & Social			
	Material resource savin	ng		
	Better environment			
	Jobs reshoring in EU			

Action name f	unctional r	als and processes and related characterisation in the field of multi- naterials, multi-materials and materials with highly improved y for aerospace applications		
Action n.	4		Sector	Aerospace
Description of the	challenge	(current gap)		1
Reliability of AM produced parts during their life time is essential for aerospace applications. Reliablehigh performance materials (light weight, strong, high temperature, reliable) and special materials(ceramic/metal) or materials that include multifuncional capabilities on the materials (e.g. sensorngconductivity), Another challenge is enabling the use of multi materials and graded materials. Thismay be achieved also through reliable modeling tools and optimized processes.Proposed activities• Development of shape memory alloys (thermal and magnetic), piezoelectric actuators and electro				
 active polymers Lightweight materials (e.g. titanium alloys) Extreme operating temperatures superalloys for turbine components Improved dynamic (fatigue) materials properties: development of new alloys with improved dynamic properties and the development of advanced composites including high mechanical resistance ceramic particles in metal matrix Development of materials with improved creep and oxidation resistance Development of new routes for powder production to enable cheaper powders Development of wire feedstock value chain with chemistry tailored for AM applications Welding filler metal supplier Development of new machine concepts e.g. for graded material properties and multi material combinations and the development of modelling tools to support this activity Fatigue and fracture toughness properties; effect of defects Residual stress in materials, caused by AM process and miss-match of different material properties 				
(i.e. elastic modulus and coefficient of thermal expansion) Value chain segments Modelling Post Process Design Product X Material End of Life X Process Complete VC			t Life	
Current TRL	4-6		Target TRL	7
Type of Action		IA		
Target Products ✓ Turbine Parts / Engine ✓ Small aircraft wings and fuselage and their components ✓ Cabin & Cockpit parts ✓ Other complex parts ✓ Components of large aircraft wings and fuselage ✓ Spare parts & repair ✓ Niche, low volume parts ✓ Embedded Electronics				

Action name fun	New materials and processes and related characterisation in the field of multi- functional materials, multi-materials and materials with highly improved functionality for aerospace applications		
High expected impact on: Economic & Industrial Increased product quality and performances			
	Increased production capacity		
	Potential for EU leadership		
	Environment & Social		
	Increased number of jobs		
	Material resource saving		
	Jobs reshoring in EU		

Action name Develop p joining/we	rocesses and tools to managed	ge graded materials,	overcoming the need of	
Action n. 5		Sector	Aerospace	
Description of the challenge	e (current gap)			
Machining and welding of su	uper alloys produced by AM	(Ni and Ti based) can	be very difficult.	
	ge graded materials to overc	•	0. 01	
	t methods. Necessary to hav	e a fast and accurate	measuring method to	
adapt new geometry to the	already existing.			
Proposed activities				
• •	th machine parameters thro		-	
	ols (in terms of materials and	d geometry) for AM p	arts	
• Use of ceramics		an alata a satuta .		
 Development of appropria 3D optical in-process mea 	ate modelling tools to suppo	rt this activity		
Value chain segments				
value chain segments	Modelling	Post Pro	ocess	
	x Design	Product	t	
	x Material			
	x Process		ete vC	
Current TRL 2-		Target TRL	5	
Type of Action	RIA			
Target Products		✓ Turbine Parts / Engine		
	 ✓ Small aircraft wings and fuselage and their components 			
		 ✓ Other complex parts 		
	 ✓ Components of large aircraft wings and fuselage ✓ Components 9 remain 			
	 ✓ Spare parts & repair ✓ Niche, low volume parts 			
	 Kiche, low volume parts ✓ Embedded Electronics 			
High expected impact on:	Economic & Industrial			
		Increased product quality and performances		
	Increased IPR protection			
	Increased business generated			
	Environment & Social			
	Reduction of CO2 emis	sion		
	Material resource savir	ıg		
	Better personal health			

Action name		rocess with control mechanisms for improved i lity and performance of AM processes	epeatability,	
Action n.	6	Sector	Aerospace	
Description of the	challenge	(current gap)		
Current building processes often perform the printing without recognizing errors during the fabrication. It is required to demonstrate that the key process parameters are under control for certification in this sector. Repeatability, reproducibility and performance of AM processes can be improved using knowledge and tools, in order to get predictable outcome of the process. Lack of availability of suitable monitoring systems for AM; Incorporation into existing machines to control quality during building process. Control mechanisms for yield optimised processes. This is necessary for processing and equipment right performance, and the ability to qualify and certify parts and processes.				
Proposed activitie				
 Implement real thermal field mapping (from machine sensors) to determine residual stresses. Data regarding mechanical properties, dimensional accuracy, surface roughness etc. coupled with the respective machine characteristics and process parameters Efficient modelling tools to provide intelligent feedback control Make use of established know-how in polymer fused deposition modelling (FDM), injection moulding and powder injection molding (PIM) Interaction with the "design" and "modelling" VC segments, i.e. design and process iterations Structural integrity analysis: design against fatigue and design for damage (defect) tolerance Develop in-situ multiscale analysis methods by vision systems and image processing Create in line control systems with feedback capabilities 				
Value chain segme	ents	xModellingPost PrxDesignProductxMaterialEnd ofxProcessComplete	t Life	
Current TRL	4-(Target TRL	7	
Type of Action		IA	'	
Target Products		 Turbine Parts / Engine Small aircraft wings and fuselage and their components Cabin & Cockpit parts Other complex parts Components of large aircraft wings and fuselage Spare parts & repair Concept modelling, prototyping and advanced moulds Niche, low volume parts Embedded Electronics 		
High expected imp	act on:	<u>Economic & Industrial</u> Increased product quality and performances Increased production capacity Reduced time to market		

Action name	Improved process with control mechanisms for improved repeatability, reproducibility and performance of AM processes	
Environment & Social Material resource saving Jobs reshoring in EU		Material resource saving Jobs reshoring in EU
		Reduction of CO2 emission

Action name	Research on stresses	material characterization focusing on dyr	namic properties and residual		
Action n.	7	Sector	Aerospace		
Description of t	he challenge (current gap)	•		
-		netal materials, for different materials and	AM technologies;		
Study residual s	Study residual stresses in AM parts				
Proposed activi	ities				
• perform fatig	ue tests in orde	er to determine fatigue limit and construct	t S-N curves for various		
materials and A	-				
		he influences of properties of the materia	I, the technology and layered		
structure to the	•				
		of technological supports to residual stre			
		gy process parameters to residual stresses			
		rocess methods for reduction of residual s	tresses		
Value chain seg	gments	Modelling x Po	ost Process		
		Design Product			
		x Material End of Life			
		x Process Co	omplete VC		
Current TRL	4-5	Target TRL	6		
Type of Action		RIA			
Target Products	5	✓ Turbine Parts / Engine			
		✓ Small aircraft wings and fuselage and their components			
		✓ Cabin & Cockpit parts			
		✓ Other complex parts			
		 Components of large aircraft wings and fuselage Concept modelling, protectyping and advanced moulds 			
High expected i	impact on:	✓ Concept modelling, prototyping and advanced moulds			
nigh expected i	impact on.	Economic & Industrial			
		Increased product quality and performances Reduced time to market			
		Increased IPR protection			
		Environment & Social			
		Material resource saving			
		Jobs reshoring in EU			
		Better environment			

Action name Design strategies for the development of complex shaped structures (e.g. Lattice structures)			tures (e.g. Lattice		
Action n. 8			Secto	r	Aerospace
Description of the challe	enge (current gap)			
The ability of AM to produce optimised complex shapes can only be utilised if these shapes can be designed.					
Proposed activities					
•	autor	natically generate stress o	ptimized latti	ce structures	(Preliminary
	lausibi	lity checks for structures u	nder constra	ints (Prelimir	narv
		, es with AM process (Conce			,
 Integration of simulation 	ion int	o the design phase (both in	n the Prelimi	nary and Deta	ail design)
 Include material properties 	erties	taking into account proces	s defects in d	esign loop	
	•	ization tools (including dyr	namic loads,	cyclic loads,	vibrations, shock
absorption, optimal wei					
	Durab	ility assessment (Detail des	sign)		
Value chain segments		x Modelling		Post Process	5
		x Design		Product	
		Material		End of Life	
		Process		Complete VC	
				complete v	
Current TRL	5-6		Target TRL		7
Type of Action		IA			
Target Products		✓ Turbine Parts / E	-		
		✓ Small aircraft wir		age and their	components
	✓ Other complex parts				
		 Components of large aircraft wings and fuselage Concept modelling, protectyping and advanced moulds 			
High expected impact o	n.	✓ Concept modelling, prototyping and advanced moulds			
night expected inipact o		<u>Economic & Industrial</u> Increased product quality and performances			
		Increased business generated			
		Potential for EU leadership			
		Environment & Social			
		Material resource savin	g		
		Reduction of CO2 emiss	•		
		Jobs reshoring in EU			

Action name Increas	ed au	tomation of repair proces	ses through integ	ration of AM and robotics	
Action n. 9			Sector	Aerospace	
Description of the challe	enge (current gap)			
Process integration, CAN	Process integration, CAM for automated repairing -> CNC (computer numerical control) robots.				
Repair of expensive parts	s (eg t	urbine blades) by adding n	ew material at wo	orn regions.	
Proposed activities					
 Develop and adapt the 	e proc	ess chain for repair approa	ch in order to hav	e an easy process and a	
final product with the be	•	•			
	•	pairing processes through			
		detection / Gouging machir		•	
	•	-	• •	vanced alloy materials (e.g.	
		n with some hybrid manuf	-	s, this should be a part of	
	•	nt, evaluation and demonst			
	on str	ategies with development	of appropriated s	tandards	
Value chain segments		Modelling	Post	Process	
		 Design	Proc	luct	
		Material		of Life	
		x Process	Com	plete VC	
Current TRL	5-6		Target TRL	7	
Type of Action		IA			
Target Products		 Other complex part 	arts		
		 ✓ Spare parts & rep 			
		✓ Niche, low volume parts			
		 Embedded Electr 	onics		
High expected impact or	n:	Economic & Industrial			
		Increased production ca	• •		
		Reduced time to market			
			erated		
		Material resource saving	5		
		Reduction of CO2 emiss	ion		
		Better environment			

Action name Improved p	rocess control and reprodu	ucibility of nozzle	-based AM techniques	
Action n. 10		Sector	Aerospace	
Description of the challenge				
It is required to demonstrate that the key process parameters are under control for certification in this sector. Repeatability, reproducibility and performance of AM processes can be improved using knowledge and tools, in order to get predictable outcome of the process. Lack of availability of suitable monitoring systems for AM; Incorporation into existing machines to control quality during building process.				
Proposed activities				
 Create advantage by combining small complex and functional AM parts with large volume parts with only stability as a function Development of combined AM/subtracting with very good control of final product geometry and properties Hybrid solutions should not necessarily be implemented within the same machine: develop techniques for AM integration in the industrial production system and/or Hybrid fabrication processes using multiple AM and other processes Joining technologies, e.g. by welding, to join AM with AM or conventional materials to form a larger or complex geometry part 				
Value chain segments	Modelling	Pos	st Process	
	x Design	Pro	oduct	
	x Material		d of Life	
	x Process		mplete VC	
Current TRL 4-5		Target TRL	6	
Type of Action	RIA			
Target Products	✓ Cabin & Cockpit✓ Other complex p	ngs and fuselage parts parts arge aircraft wing pair ne parts	and their components gs and fuselage	
High expected impact on:	Economic & Industrial			
	Potential for EU leaders	•		
	Reduced manufacturing	-		
	Increased production c	apacity		
	Environment & Social			
	Better environment Material resource savir	a a a a a a a a a a a a a a a a a a a		
	Reduction of CO2 emis	•		

Action name Develop	p materials and surface finishi oducts	ng processes for impro	oved surface quality of		
Action n. 11		Sector	Aerospace		
Description of the challe	nge (current gap)				
Complex lattice structure	Complex lattice structures are difficult to reach for post process surface treatments. Surface finishing				
can improve the fatigue properties of a workpiece as cracks can start at the surface of the part.					
Proposed activities					
	ct of post processing operation	s and automation of po	ost processing.		
 Development of materi 					
-	ctive surface finishing processe	es for example combination	ation of AM and		
subtractive manufacturin	0				
Reduce and control par	-				
	rocessing, e.g. on balance of co	ost (time, money) vs. m	naterial quality (residual		
stress, defect size, streng Value chain segments	,tn)				
value chain segments	Modelling	x Post Pro	ocess		
	x Design	Product	t		
	x Material	End of I	ife		
	x Process	Comple	ite VC		
Current TRL	6	Target TRL	7		
Type of Action	IA				
Target Products		✓ Turbine Parts / Engine			
		✓ Small aircraft wings and fuselage and their components			
		 ✓ Cabin & Cockpit parts ✓ Other complex months 			
		 ✓ Other complex parts 			
		 Components of large aircraft wings and fuselage Components 8 remain 			
		 ✓ Spare parts & repair ✓ Niche, low volume parts 			
	 ✓ INICITE, IOW VOIU ✓ Embedded Elect 	-			
High expected impact on					
nigh expected impact on		<u>Economic & Industrial</u> Increased production capacity			
	Reduced time to mark				
		lity and performances			
	Environment & Social				
	Material resource savi	ng			
	Jobs reshoring in EU	-			
	Increased number of	jobs			

Action name Develop N for AM	IDT and inspection criteria (for Aerospace applications) and procedures		
Action n. 12	Sector Aerospace		
Description of the challeng	e (current gap)		
Are the "classic" NDT metho	ods applyed in the aerospace valid and sufficient also for AM?		
Proposed activities			
	n and research activities in the following aspects:		
 Defect class 			
	influence on static and fatigue performance		
	d measurement of residual stresses		
	ction techniques (CT, UT)		
– Acceptance	criteria		
Value chain segments	Modelling x Post Process		
	Design Product		
	Material End of Life		
	Process Complete VC		
Current TRL 6	Target TRL 7		
Type of Action	CSA/IA		
Target Products	✓ Turbine Parts / Engine		
	✓ Small aircraft wings and fuselage and their components		
	✓ Cabin & Cockpit parts		
	✓ Other complex parts		
	✓ Components of large aircraft wings and fuselage		
	 ✓ Spare parts & repair ✓ Embedded Electronics 		
Lligh over a tool impost on			
High expected impact on:	Economic & Industrial		
	Increased product quality and performances Reduced manufacturing cost		
	Potential for EU leadership		
	Environment & Social		
	Material resource saving		
	Reduction of CO2 emission		
	Better environment		

Action name Produc	tion of la	rger airframe structure	s through AM techn	ologies
Action n. 13			Sector	Aerospace
Description of the challe	nge (cur	rent gap)		
Increasing the size of env	velopes n	nean increases the proc	uctivity of the "print	ers" including DED
(directed energy deposit				
methods to perform qua	lity contr	ol/NDT on large AM pa	rts are to be furthern	nore investigated.
Proposed activities				
• Development of new machines with larger build envelopes, high deposition rate for higher				
productivity, and integra	-			
 Assembly operations to 			•	
 Address critical issues 			-	
building times. For example detection and elimination of faults with 100% certainty, achieve				
consistency of properties and minimize tension over a large build area and volume.				
• Secure good printing of		-	ole printing area	
 High deposition rate keep 	eeping go	ood quality		
Value chain segments		Modelling	x Post Pro	ocess
		< Design	x Product	ŀ
		< Material	End of I	Lite
	2	< Process	Comple	ete VC
Current TRL	3-4		Target TRL	6
Type of Action	R			
Target Products		•	arge aircraft wings an	-
		· · ·	ng, prototyping and a	dvanced moulds
High expected impact or		<u>Economic & Industrial</u>		
		Reduced time to market		
		ncreased production ca		
		Potential for EU leaders	hip	
		Environment & Social		
		Material resource saving	8	
		Better environment		
		ncreased recycling		

AUTOMOTIVE

Action name Improv	ved modelling tools for materi	als processing			
Action n. 1		Sector	Automotive		
Description of the challe	enge (current gap)				
C C	simulations prior to production	•			
	ctural computational modelling		ity modelling,		
	ptimization, AM material prop	erties table).			
Proposed activities					
	 Increase understanding of the microstructure-material properties relationships. Foster the 				
academic structure in the simulation of material microstructure (coarse grained, Monte Carlo, random walk)					
,	 Develop multiphysics, multiscale modelling, from grain size or molecule towards components 				
 Develop multiphysics, multiscale modelling, from grain size of molecule towards components Holistic modelling approaches using multiphysics simulation going from process parameters and 					
simulation to product mechanical properties, via thermal mapping/history of the workpiece					
•	nodelling techniques utilizing a	11 0. /	•		
Value chain segments	x Modelling	Post Pro			
	x Design	Product			
	Material	End of Li	fe		
	Process	Complet	e VC		
Current TRL	4-5	Target TRL	6		
Type of Action	RIA				
Target Products	 Engine Comport 				
		s of production and supp	ports		
	✓ Embedded elect				
		lling, prototyping and de	sign		
	 ✓ Niche, low volu ✓ Spare parts & r 				
High expected impact o		•			
ingh expected impact o		ality and performances			
	Increased production	• •			
	Reduced time to mark				
	Environment & Social				
	Material resource sav	ing			
	Jobs reshoring in EU				
	Increased number of	jobs			

Action name Quality and	consistency of powder pro	duction		
Action n. 2		Secto	r	Automotive
Description of the challenge	(current gap)			
The AM industry need to defi	ne relevant properties and	improve und	erstanding ar	nd handling of
powders.				
Material quality and - control				
Implement new developmen		ge close links,	cooperation/	with feedstock
manufacturers. Connected to	aerospace action n. 3			
Proposed activities				
 Involvement of powder and 				
• Work on material quality, s	hape for powder and size ir	order to hav	ve a well-cont	rolled material for
the 3D process				
 Encourage developments based on nanotechnologies and nanomaterials texturing, coatings, 				
spheroidization, etc.				
 Standard for measuring relevant properties Training in Powder handling 				
Recycling improvement				
Value chain segments				
value enam segments	Modelling		Post Process	
	Design		Product	
	x Material		End of Life	
				_
	x Process		Complete VC	
Current TRL 5-6		Target TRL		7
Type of Action	IA			
Target Products	 Engine Compone 			
	✓ Auxiliary means of		n and support	S
	 Embedded electr 			
	✓ Concept modellin		ng and desigr	1
	✓ Niche, low volum	•		
	✓ Spare parts & rep	bair		
High expected impact on:	Economic & Industrial	• · · · · · · · · · · · · · · · · · · ·		
	Increased product quali Reduced time to marke	• •	mances	
	Potential for EU leaders			
	Environment & Social	μh		
	Better environment			
	Better personal health			
	Better quality of life			

Action name			bility and stabilit	y through in line co zation	ontrol system,
Action n.	3	g,		Sector	Automotive
Description of th	-	e (current ga	(a		
-	-			ustrial process. Imp	provement of control
	-				ent ones are not robust
enough			•		
Proposed activit	ies				
 Monitoring and 	d automat	ion of the pro	ocess, including lo	ading/unloading, s	upport removal and post
processing					
 Develop in-situ multiscale analysis methods by vision systems and image processing 					-
• In process measurements (e.g. Insert sensors in the AM machine in order to monitor the quality of					o monitor the quality of
parts during the process)					
• Study new solutions to improve the software that control the process					
 Study the effect of process parameters on built components mechanical parameters Standardization of all process stand 					arameters
 Standardization of all process steps Matheda to reduce the magnitude of residual stress 					
Methods to reduce the magnitude of residual stress					
 Reduce porosity and surface defects Design of Experiments (DOE) 					
Value chain segr					
value chain segn	nents	x Moo	delling	Post Pi	rocess
		x Des	ign	Produc	t
		x Mat	erial	End of	Life
		x Prod	cess	Compl	
Current TRL	6			Target TRL	7
Type of Action		IA			
Target Products			Engine Componen		
			•	f production and su	pports
			Embedded electro		
				g, prototyping and	design
			Niche, low volume	-	
High expected in	nnact on:		Spare parts & repand Spare parts & repand		
night expected in	ilpact off.			y and performance	c
			d time to market		J
			ed production cap	pacity	
			ment & Social	Jucity	
			shoring in EU		
			ed number of job)S	
			environment	-	

Action name Innovative	olutions for higher product	tion rates and chea	per systems			
Action n. 4		Sector	Automotive			
Description of the challenge	(current gap)					
well as reduced post processi						
Proposed activities						
 Process planning considerations. Encourage machine and equipment manufacturers from outside the AM scene to engage and develop concepts/demo projects needed for studying feasibility Process parameters optimization Machine speed improvement Software optimises deposition paths to minimise delays for cooling / curing and maintain stable thermal field Machine producers: increase the numbers of laser sources/workheads Development of low price materials (e.g. powder size distribution - wider to reduce cost). New design to have an AM design for minimal support requirements, resulting in decreased post processing. Arrayed AM heads on a common machine structure. Parallel AM 						
Value chain segments	Modelling	Post Pi	200055			
	Modelling x Design	Produc				
	x Material	End of	Life			
	x Process	Compl	ete VC			
Current TRL 4-5		Target TRL	6			
Type of Action	IA					
Target Products ✓ Engine Components ✓ Auxiliary means of production and supports ✓ Embedded electronics ✓ Concept modelling, prototyping and design ✓ Niche, low volume parts ✓ Spare parts & repair						
High expected impact on:	Economic & Industrial					
	Increased product quality Increased production can Potential for EU leaders Environment & Social Increased number of jo Jobs reshoring in EU Material resource saving	pacity hip bs	S			

Action n. 5 Sector Automotive parts Description of the challenge (current gap) The reproducibility of parts achieved by AM should be assessed and improved. Producing parts with standard properties requires development of standard procedures. Proposed activities Create standards and certifications Definition of parameter exchange to get a higher reproducibility of the process Development of best-practice in feedstock and machine handling Round-Robin testing of materials and process parameters Machine accuracy and capability improvement Novel design approaches for AM. Experimentally-validated databases containing standard sets of process parameters per process/machine/material Standard post-processing (especially heat treatment) temperature profiles Value chain segments Value chain segments Value chain segments Current TRL Target Products Current TRL Figh expected impact on: Keyperimentally-validated databases components Concept modelling, prototyping and design Valuing weans of production and supports Concept modelling, prototyping and design Viche, low volume parts Spare parts & repair High expected impact on: Keyperimental for EU leadership Increased product quality and performances Potential	Action name Best p	ractice	s, standardization, des	ign and machine imp	provements towards	
Description of the challenge (current gap) The reproducibility of parts achieved by AM should be assessed and improved. Producing parts with standard properties requires development of standard procedures. Proposed activities Create standards and certifications Definition of parameter exchange to get a higher reproducibility of the process Development of best-practice in feedstock and machine handling Round-Robin testing of materials and process parameters Machine accuracy and capability improvement Novel design approaches for AM. Experimentally-validated databases containing standard sets of process parameters per process/machine/material Standard post-processing (especially heat treatment) temperature profiles Value chain segments Modelling x Post Process Design x Product x Material Design x Yeroess Complete VC Current TRL 6 Target TRL 7 Type of Action IA/CSA Yengine Components Yengine Components Yengine Concept modelling, prototyping and design Yitche, low volume parts Yengine Spare parts & repair High expected impact on:	increa	sing re	producibility of 3D prin	ted automotive part	S	
The reproducibility of parts achieved by AM should be assessed and improved. Producing parts with standard properties requires development of standard procedures. Proposed activities Create standards and certifications Definition of parameter exchange to get a higher reproducibility of the process Development of best-practice in feedstock and machine handling Round-Robin testing of materials and process parameters Machine accuracy and capability improvement Novel design approaches for AM. Experimentally-validated databases containing standard sets of process parameters per process/machine/material Standard post-processing (especially heat treatment) temperature profiles Value chain segments Modelling Modelling Modelling Modelling Process Current TRL 6 Target TRL 7 Type of Action Target Products Al/CSA Auxiliary means of production and supports Concept modelling, prototyping and design Niche, low volume parts Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and perfo	Action n. 5			Sector	Automotive	
standard properties requires development of standard procedures. Proposed activities Create standards and certifications Definition of parameter exchange to get a higher reproducibility of the process Development of best-practice in feedstock and machine handling Round-Robin testing of materials and process parameters Machine accuracy and capability improvement Novel design approaches for AM. Experimentally-validated databases containing standard sets of process parameters per process/machine/material Standard post-processing (especially heat treatment) temperature profiles Value chain segments Value chain segments Modelling X Post Process Design X Product X Material End of Life X Process Complete VC Current TRL 6 V Engine Components V Auxiliary means of production and supports V Auxiliary means of production and supports V Concept modelling, prototyping and design V Niche, low volume parts S Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU	Description of the chall	enge (current gap)			
Proposed activities Create standards and certifications Definition of parameter exchange to get a higher reproducibility of the process Development of best-practice in feedstock and machine handling Round-Robin testing of materials and process parameters Machine accuracy and capability improvement Novel design approaches for AM. Experimentally-validated databases containing standard sets of process parameters per process/machine/material Standard post-processing (especially heat treatment) temperature profiles Value chain segments Modelling X Post Process Design X Product X Material End of Life X Process Complete VC Current TRL 6 Target TRL 7 Type of Action IA/CSA Target Products Y Engine Components Y Auxiliary means of production and supports Y Embedded electronics Y Concept modelling, prototyping and design Y Niche, low volume parts Y Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring	The reproducibility of p	arts ac	hieved by AM should be	assessed and impro	ved. Producing parts with	
 Create standards and certifications Definition of parameter exchange to get a higher reproducibility of the process Development of best-practice in feedstock and machine handling Round-Robin testing of materials and process parameters Machine accuracy and capability improvement Novel design approaches for AM. Experimentally-validated databases containing standard sets of process parameters per process/machine/material Standard post-processing (especially heat treatment) temperature profiles Value chain segments Modelling X Post Process Design X Product X Material End of Life X Process Complete VC Current TRL Action IA/CSA Target Products Y Engine Components Y Embedded electronics Y Concept modelling, prototyping and design Y Niche, low volume parts Y Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU 	standard properties rec	juires d	evelopment of standard	d procedures.		
 Definition of parameter exchange to get a higher reproducibility of the process Development of best-practice in feedstock and machine handling Round-Robin testing of materials and process parameters Machine accuracy and capability improvement Novel design approaches for AM. Experimentally-validated databases containing standard sets of process parameters per process/machine/material Standard post-processing (especially heat treatment) temperature profiles Value chain segments Modelling X Post Process Design X Product X Material End of Life X Process Complete VC Current TRL Modelling Y Engine Components Auxiliary means of production and supports Y Embedded electronics Concept modelling, prototyping and design Niche, low volume parts Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential for EU leadership Increased product quality and performances Potential resource saving Jobs reshoring in EU 	Proposed activities					
 Development of best-practice in feedstock and machine handling Round-Robin testing of materials and process parameters Machine accuracy and capability improvement Novel design approaches for AM. Experimentally-validated databases containing standard sets of process parameters per process/machine/material Standard post-processing (especially heat treatment) temperature profiles Value chain segments Modelling x Post Process Design x Product X Material End of Life End of Life Y Process Complete VC Current TRL Target TRL Target Products Concept modelling, rototyping and design Niche, low volume parts Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU 						
 Round-Robin testing of materials and process parameters Machine accuracy and capability improvement Novel design approaches for AM. Experimentally-validated databases containing standard sets of process parameters per process/machine/material Standard post-processing (especially heat treatment) temperature profiles Value chain segments Modelling Modelling Product Material End of Life Process Complete VC Current TRL Target Products Auxiliary means of production and supports Embedded electronics Concept modelling, prototyping and design Niche, low volume parts Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU 					rocess	
 Machine accuracy and capability improvement Novel design approaches for AM. Experimentally-validated databases containing standard sets of process parameters per process/machine/material Standard post-processing (especially heat treatment) temperature profiles Value chain segments Modelling Post Process Design Product Material End of Life Process Complete VC Current TRL Target Products Y Engine Components Auxiliary means of production and supports Embedded electronics Concept modelling, prototyping and design Niche, low volume parts Spare parts & repair High expected impact on: High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU	-	•		-		
 Novel design approaches for AM. Experimentally-validated databases containing standard sets of process parameters per process/machine/material Standard post-processing (especially heat treatment) temperature profiles Value chain segments Modelling Post Process Design X Material End of Life X Process Complete VC Current TRL Target Products Auxiliary means of production and supports Embedded electronics Concept modelling, prototyping and design Niche, low volume parts Spare parts & repair High expected impact on: Economic & Industrial Increased product generated Environment & Social Material resource saving Jobs reshoring in EU 	_			neters		
 Experimentally-validated databases containing standard sets of process parameters per process/machine/material Standard post-processing (especially heat treatment) temperature profiles Value chain segments Modelling Post Process Design X Post Process Design X Product X Material End of Life X Process Complete VC Current TRL Target Products X Engine Components X Auxiliary means of production and supports X Embedded electronics X Concept modelling, prototyping and design X Niche, low volume parts X Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU 	•	-	· ·			
process/machine/material • Standard post-processing (especially heat treatment) temperature profiles Value chain segments Modelling x Post Process Design x Product x Material End of Life x Process Complete VC Current TRL 6 Target TRL 7 Type of Action IA/CSA Fingine Components X Auxiliary means of production and supports X Engine Components X Auxiliary means of production and supports X Engine Components X Engine Components Y Engine Components						
 Standard post-processing (especially heat treatment) temperature profiles Value chain segments Modelling Post Process Design Product X Product X Material End of Life X Process Current TRL Target TRL Target TRL Complete VC Current TRL 6 Target Products A (CSA Target Products Concept modelling, prototyping and design Concept modelling, prototyping and design Niche, low volume parts Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU 						
Value chain segments Modelling x Post Process Design x Product x Material End of Life x Process Complete VC Current TRL 6 Target TRL 7 Type of Action IA/CSA 7 Target Products - Embedded electronics 7 V Engine Components - Concept modelling, prototyping and design - Niche, low volume parts - Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances - Potential for EU leadership Increased business generated - - Environment & Social Material resource saving Jobs reshoring in EU -	• • •					
Imiddelling X Post Process Design X Product X Material End of Life X Process Complete VC Current TRL 6 Target TRL 7 Target Products		sing (e	specially heat treatmen	t) temperature profile	es	
x Material x Process Current TRL 6 Target TRL 7 Type of Action IA/CSA Target Products Engine Components Auxiliary means of production and supports Embedded electronics Concept modelling, prototyping and design Niche, low volume parts Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU	Value chain segments		Modelling	x Post	Process	
x Material x Process Current TRL 6 Target TRL 7 Type of Action IA/CSA Target Products Engine Components Auxiliary means of production and supports Embedded electronics Concept modelling, prototyping and design Niche, low volume parts Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU			Design	x Prod	uct	
Image: Complete VC Current TRL 6 Type of Action IA/CSA Target Products Finite Components Auxiliary means of production and supports Embedded electronics Concept modelling, prototyping and design Niche, low volume parts Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU						
Current TRL 6 Target TRL 7 Type of Action IA/CSA Auxiliary means of production and supports ✓ Embedded electronics ✓ Concept modelling, prototyping and design ✓ Niche, low volume parts ✓ Spare parts & repair Fconomic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU Target TRL 7 						
Type of ActionIA/CSATarget Products✓ Engine Components✓ Auxiliary means of production and supports✓ Embedded electronics✓ Concept modelling, prototyping and design✓ Niche, low volume parts✓ Spare parts & repairHigh expected impact on:Economic & IndustrialIncreased product quality and performancesPotential for EU leadershipIncreased business generatedEnvironment & SocialMaterial resource savingJobs reshoring in EU			x Process	Com	plete VC	
Target Products ✓ Engine Components ✓ Auxiliary means of production and supports ✓ Embedded electronics ✓ Concept modelling, prototyping and design ✓ Niche, low volume parts ✓ Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU	Current TRL	6		Target TRL	7	
 Auxiliary means of production and supports Embedded electronics Concept modelling, prototyping and design Niche, low volume parts Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU	Type of Action		IA/CSA			
 ✓ Embedded electronics ✓ Concept modelling, prototyping and design ✓ Niche, low volume parts ✓ Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU	Target Products		 Engine Compo 	nents		
 ✓ Concept modelling, prototyping and design ✓ Niche, low volume parts ✓ Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU			•	•	supports	
✓ Niche, low volume parts ✓ Spare parts & repairHigh expected impact on:Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU						
✓ Spare parts & repair High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU					d design	
High expected impact on: Economic & Industrial Increased product quality and performances Potential for EU leadership Increased business generated Environment & Social Material resource saving Jobs reshoring in EU				•		
Increased product quality and performances Potential for EU leadership Increased business generated <u>Environment & Social</u> Material resource saving Jobs reshoring in EU			· · ·	•		
Potential for EU leadership Increased business generated <u>Environment & Social</u> Material resource saving Jobs reshoring in EU	High expected impact of	on:				
Increased business generated <u>Environment & Social</u> Material resource saving Jobs reshoring in EU					ces	
Environment & Social Material resource saving Jobs reshoring in EU				•		
Material resource saving Jobs reshoring in EU			-			
Jobs reshoring in EU						
				ning .		
			Increased number of	iohs		

Action name		egies for the developme	ent of complex shaped st	ructures (e.g. Lattice
Action n.	structures)		Sector	Automotive
Description of the	-	(current gan)	Jector	Automotive
	-		es can only be utilised if t	hese shanes can he
designed.		optimised complex shap	es can only be atilised if t	nese shapes can be
Proposed activitie	es			
•		matically generate stress	optimized lattice structu	ires (Preliminary
design)				
• Develop automated plausibility checks for structures under constraints (Preliminary				
design).Integrate CAD packages with AM process (Conceptual design)				
 Integration of simulation into the design phase (both in the Preliminary and Detail design) 				
• Include materia	I properties	taking into account proc	ess defects in design loop	0
	.	nization tools (including o	dynamic loads, cyclic load	ds, vibrations, shock
absorption, optim	• •			
	•	oility assessment (Detail o	design)	
Value chain segm	ents	x Modelling	Post Proc	cess
		x Design	Product	
		Material	End of Lif	fe
		Process	Complete	e VC
Current TRL	5-6		Target TRL	7
Type of Action		IA		
Target Products		 ✓ Concept mode 	elling, prototyping and de	sign
		✓ Niche, low vol	-	
High expected im	pact on:	Economic & Industria		
		Reduced manufactur	0	
			ality and performances	
		Potential for EU lead	•	
		Environment & Social	<u>I</u>	
		Increased recycling		
		Material resource say	/ing	
		Jobs reshoring in EU		

Action name	Developme one step	nt and demonstrate strate	gies for cost-effective	e printing assemblies in
Action n.	7		Sector	Automotive
Description of th	-	(current gap)	5000	Automotive
-		design methodologies, train	ing (demonstration n	naterial) and
certification of de	-			
Proposed activit				
Development of	of new desig	n strategies and tools, for th	ne new material class	, e.g. anisotropic
properties and inhomogeneous microstructure, presence of residual stress. Select parts that are				
suitable for AM production.				
 Benchmark cos 				
• Training of AM capabilities (including novel approaches for component fabrication).				ication).
• Team design fo		tional parts.		
Value chain segn	nents	Modelling	x Post Pr	ocess
		Design	x Product	t
		Material	End of I	
		x Process	Comple	ete VC
Current TRL	6	_	Target TRL	7
Type of Action		IA		
Target Products		 Engine Compone 		
		-	of production and sup	oports
		✓ Embedded electr		
		 ✓ Concept modelin ✓ Niche, low volum 	ng, prototyping and d	esign
		 ✓ Niche, low Voluit ✓ Spare parts & rep 	•	
High expected in	nnact on:	Economic & Industrial	5411	
on expected in		Increased product quali	ty and performances	
		Increased production ca	• •	
		Increased business gen		
		Environment & Social		
		Jobs reshoring in EU		
		Increased number of jo	bs	
		Material resource savin	g	

Action name Ob	otaining in	dustrially relevant larger c	ertified build envelo	pes		
Action n.	8		Sector	Automotive		
Description of the c	hallenge (current gap)				
		ring, "conventional" machi		ight come in and help to		
take current machir	nes to the r	next level of machine desig	n and engineering.			
Proposed activities						
-	 Encourage machine and equipment manufacturers from outside the AM scene to engage and 					
		pment is already in progres				
		ndustry and research comn				
		ons for the use of more tha	an 1 energy source ir	n the build envelope		
• Expand to other AM tech (B.J).						
 Implement R&D results in high TRL industry solutions (focusing on hybrid manufacturing) 						
Value chain segmer	nts	Modelling	x Post Pr	ocess		
		Design	x Produc	+		
		Material	End of	Life		
		x Process	Comple	ete VC		
Current TRL	5-6		Target TRL			
Type of Action						
Target Products		✓ Engine Compone	nts			
		 Auxiliary means of 	•	pports		
		 Embedded electr 	onics			
		🗸 🖌 Niche, low volum	•			
		✓ Spare parts & rep	air			
High expected impa	act on:	<u>Economic & Industrial</u>				
		Increased business gen				
		Potential for EU leaders	•			
Increased number of private companies involved						
		Environment & Social				
		Jobs reshoring in EU				
		Increased number of jo				
		Material resource saving	5			

Action name D	evelopmen	t, optimization and validat	tion of hybri	d manufactu	ring
Action n.	9		Secto	r	Automotive
Description of the	challenge (current gap)			
Exploiting the capa	bility of AM	by integrating or combining	ng AM with c	other process	es in the
manufacturing stre					
Proposed activities					
-	-	ing small complex and fun	ctional AM p	arts with larg	e volume parts
with only stability a					
•	combined A	M/subtracting with very g	ood control (of final produ	ct geometry and
 Properties Hybrid solutions should not necessarily be implemented within the same machine: develop 					
•		in the industrial productio			•
using multiple AM	-	-	ii system and		iblication processes
 Processing of inlays 					
• Joining technologies, e.g. by welding, to join AM with AM or conventional materials to form a larger					
or complex geometry part. Attention should be paid to the interface of the joints and residual stress					
in the heat affected zones due to property mismatch and/or forced fitting					
• Have a manufacturing deployment assigning to AM only some finishing add on standard optimised					
parts					
Value chain segme	nts	Modelling	x	Post Process	5
		Design		Product	
		Material		End of Life	
		x Process		Complete V	C
Current TRL	4-5		Target TRL		6
Type of Action		RIA			
Target Products		 Engine Compone 			
		✓ Auxiliary means of a standard sta	•	and support	S
		 Embedded electr 			
		 ✓ Concept modelling, prototyping and design ✓ Niche, low volume parts 			
		 ✓ Niche, low volum ✓ Spare parts & rep 	•		
High expected imp	act on:	Economic & Industrial			
		Increased product quali	ty and perfor	mances	
		Potential for EU leaders			
		Increased IPR protection			
		<u>Environment & Social</u>			
		Increased number of jo	bs		
		Reduction of CO2 emiss	ion		
		Jobs reshoring in EU			

Action name	Characteriza large assemb	tion of the behavior of AN blies	A components in larg	e assemblies and of		
Action n.	10		Sector	Automotive		
Description of t	he challenge (current gap)		·		
To test the who	le structure, to	simulate/molding to integ	grate AM properties			
Proposed activi	ities					
 Assembly guid 						
	Access the AM properties.					
 Implementation of AM Properties in FE/CAD. 						
Check current testing rules.						
 Manufacturing process in components integrating AM assembling parts. 						
Value chain seg	ments	Modelling	x Post Pro	ocess		
		Design	x Product	t		
		x Material	End of I	Life		
		x Process	Comple	ete VC		
Current TRL	5-6		Target TRL	7		
Type of Action		IA				
Target Products	S	 Engine Compone 	ents			
		✓ Concept modelli	ng, prototyping and d	esign		
		 Niche, low volum 	ne parts			
High expected	impact on:	Economic & Industrial				
		Potential for EU leaders	•			
		Increased product qual				
		Increased production ca	apacity			
		<u>Environment & Social</u>				
		Jobs reshoring in EU				
		Material resource savin	•			
		Increased number of jo	bs			

CONSUMER GOODS AND ELECTRONICS

			tronics, smart/4D printing materia	
			rol of AM processes and quality an	d
	ity of cus	tomized products		
Action n. 1		Sector	Consumer Goods and Electr	onics
Description of the challe				
. .			optimal. Actions needed to help	1
			ntelligent AM parts (with embedded	
-			Ill-scale flexible electronics a strong	
linkage between materials, design and advanced electronics is necessary as one of the key enablers in this segment. In this context an important challenge is open innovation.				
	lext an m	iportant chanenge is oper		
Proposed activities	norted by	automated coftware too	Is to bring ANA into the products (no	rto
-	• •		Is to bring AM into the products/pa ving further enhancement of desigr	
features. (Application in			wing further enhancement of design	1
 Process chain modellin 	•			
 Improved topology optimisation tools 				
 Establish linkages between electronics design and AM geometry design in one design system 				
towards first time right production of intelligent (IoT) AM products				
. .		erials, design and advance		
 Implementation of der 		-		
Value chain segments				
	×	Modelling	Post Process	
	×	Design	Product	
	×	x Material End of Life		
			\Box	
	Ľ	Process	Complete VC	
Current TRL	4-5		arget TRL 6	
Type of Action	RI			
Target Products		✓ Wearables		
		 ✓ Household utensils 		
		✓ Sensors and Antenr	las	
		 ✓ Entertainment 		
		✓ Basic electronic con	-	
		 ✓ Spare Parts & Repair 	r	
✓ Other Electronics				
✓ Packaging				
High owneed immedia	.	✓ Art		
High expected impact o		<u>conomic & Industrial</u>	a tod	
		ncreased business generand ncreased number of privation of privation of privation of the second s		
		ncreased IPR protection		
		icreased IPR protection		

Action name	Convergence among custom design , electronics, smart/4D printing materials andAction nameartificial intelligence enabling better control of AM processes and quality and reliability of customized products					
		<u>Environment & Social</u> Jobs reshoring in EU Increased number of jobs Material resource saving				

Action name Materi electro		ulti-material parts (including multi-material					
Action n. 2	Secto	or Consumer Goods and Electronics					
Description of the challe	enge (current gap)						
New developments in this area should be made to enable AM of functional parts. Material properties such as optical, magnetic, conductive, fluidics, are not implemented in AM well enough today. Broader availability of multi-material parts could lead to higher demand from consumers. Proposed activities							
•	 Development of higher performance polymer material able to produce 3D components with the 						
same or enhanced prope • Development of multi • AM materials that are where still important ga • Conductive materials i • Advanced materials w	erties as injected parts e.g. met -materials e.g. coated coloured comparable to established ma ps (apart from polymers) in ter	etallic, high tech ceramics d material or parts local properties aterials: materials like metal, ceramics and glass rms of properties exist.					
Value chain segments	Modelling	Post Process					
		Product					
	x Design						
	x Material	End of Life					
	Process	Complete VC					
Current TRL	4-5	Target TRL 6					
Type of Action							
Target Products	 ✓ Wearables ✓ Household uter ✓ Sensors and An ✓ Entertainment ✓ Basic electronic ✓ Spare Parts & R ✓ Other Electroni ✓ Packaging ✓ Art 	ntennas c components Repair					
High expected impact o		ality and performances ership ing cost ving					

		ass customization of AM eation) and fabrication st		products, inclu	ding collective
Action n. 3		Sector	•	Consumer Goo	ds and Electronics
Description of the challe	• •	• • •			
		f the consumer in the des	-		
-		nlock this capability. The p	-		
		has a strong focus on this	•	•	•
-		ng actions), appropriate to			
	•	ients, it is important to un		• • •	
customised. It is important to promote collective design and fabricatio and connect					
ART/design/engineering	to ima	agine new products			
Proposed activities	alatfor	m able te manipulate CAF) data allor	ving both ongin	oars and sustamors
to interact with the final		m able to manipulate CAD	vudia, dilO\	and noth englin	ieers and customers
	•	- ·	tools (inclu	ding multi-mate	erial conductivity
• Use customization supported by automated software tools (including multi-material, conductivity, electronic functionality) to bring AM into the products/parts. Not only for design, but also directly to					
relevant manufacturing & logistics processes as integrated approach					
 Mechanisms for modularisation of products 					
 Analysis of process chains, allowing "configuration" of products in a detailed manner 					
• The creation of good product databases					
Demonstration project	ts				
Customisation perspect	ctives	should include both B2C, b	out also B2	B perspectives (focus not only on
consumer side)					
•	-	design schools, develop o			
	oftwa	re used in ART and design	with engin	eering AM soft	ware.
Value chain segments		x Modelling	,	Post Process	5
		x Design)	Product	
		x Material		End of Life	
		x Process		Complete V	C
Current TRL	5-6		Target TR		7
Type of Action	50	IA/CSA	Turget II		,
Target Products		✓ Wearables			
		✓ Household utens	sils		
		✓ Entertainment	-		
		✓ Basic electronic	component	S	
✓ Spare Parts & Repair					
		✓ Packaging			
✓ Art					
High expected impact o	n:	Economic & Industrial			
High expected impact o	n:		apacity		
High expected impact o	n:	Economic & Industrial			

Action name	Promoting mass customization of AM consumer products, including collective design (co-creation) and fabrication strategies				
	<u>Environment & Social</u> Jobs reshoring in EU Increased number of jobs Material resource saving				

Action name		trategies to improve aesthet oost-processing steps (e.g. th			
Action n.	4	Sector	Cons	sumer Goods and	Electronics
Description of th					
achieve acceptat processes to proc	le level of pa duce functior ents and it is	quirements for surface qualit rt quality. Use of the charact al and aesthetically pleasing an important factor for prod	eristics of ma objects. Aest	terials and manu thetics play obvior	facturing usly a key
		a specific "look and feel"			
 learning from and Improved topo Reduction of su Utilizing productailoring Colouring, name Work on mater Develop procession 	d further dev logy optimiza urface roughr cts made by o o-structuring rial and proce sses for post bsolete. Inno	concepts related to continue eloping Carbon 3D and Printy ition tools tess (also for internal structur conventional technologies as to enhance surface propertie ss with material ageing beha processing but also the AM p vative support solutions. Role	valley machin res) inserts/basis es wear, wett viour rocess in suc	es) for Additive & su ability, antifoulin h a way that post	btractive g, dust free processing
Value chain segn	nents	Modelling Design X Material X Process	P	ost Process roduct nd of Life omplete VC	
Current TRL	6	T	arget TRL	7	
Type of Action					
Target Products		 ✓ Wearables ✓ Household utensils ✓ Sensors and Anteni ✓ Entertainment ✓ Basic electronic cor ✓ Spare Parts & Repa ✓ Other Electronics ✓ Packaging ✓ Art 	nas mponents		
High expected in	npact on:	<u>Economic & Industrial</u> Increased product quality Reduced time to market Increased number of priva			

Action name	Innovating strategies to improve aesthetics and surface quality and facilitate or even avoid post-processing steps (e.g. through continuous processes without layering)					
	<u>Environment & Social</u> Reduction of CO2 emission					
	Material resource saving Better quality of life					

Drodi	ctivo c	elf-learning and holistic m	ulti obv	rcical modallir	ag approaches for		
		M processes leading to inc					
Action n. 5		Sector			Goods and Electronics		
Description of the cha	llenge	(current gap)	urrent gap)				
		tly linked to material prope			-		
		ne right minimal design (inc	luding	design history	and structural		
modelling and simulati	ons) m	ust be developed.					
Proposed activities							
•	•	dict final properties and pr	•		and all a formulation		
-		I material, processes leadin	-		-		
 Self-learning models with iterative corrections will yield first time right products. Develop holistic modelling approaches using multiphysics simulation and going from process 							
parameters and simulation to product mechanical properties, via thermal mapping/history of the							
workpiece.							
 Implement stochastic/empirical modelling techniques utilizing a large volume of data (knowledge 							
repository).		C .		U U			
• Electronics design an	nd AM g	geometry design in one des	ign soft	ware system			
Value chain segments		x Modelling		Post Pro	ocess		
		x Design		Product			
		Material E		End of L	End of Life		
		Process		Comple	te VC		
Current TRL	5-6		Target	t TRL	7		
Type of Action							
Target Products		✓ Wearables					
		✓ Household utens					
		 ✓ Sensors and Ante ✓ Entertainment 	ennas				
		 Entertainment Basic electronic components 					
		 ✓ Spare Parts & Repair 					
		✓ Other Electronics					
		✓ Packaging					
		✓ Art					
High expected impact	on:	Economic & Industrial					
		Increased business gen Increased production ca					
		Increased production ca	• •	mnanies invo	lved		
		Environment & Social					
		Material resource savin	g				
		Better environment	0				
		Increased recycling					

1		letter described files	the second based on the			
Action name	ving process sustaina ry 4.0 approaches	ibility through flex	lible and hybrid h	nanufacturing and		
Action n. 6	y no approaches	Sector	Consumer Go	oods and Electronics		
Description of the challe	enge (current gap)					
New developments inclu	iding the manufactur	ring processes in t	his area should be	e made to enable AM		
of functional parts. Flexi	-					
or adaptation to existing	; interfaces, are esser	ntial. Economic us	e of AM requires l	lower cost per part,		
i.e. higher productivity o	r lower machine cos	t				
Proposed activities						
• Development of more	flexible/combination	n 3D processes				
 Develop hybrid proces 		in existing produce	ction processes or	adaptation to		
existing interfaces, with						
 Equipment for integra 				mponents		
 Process comprises: multi-material, conductive tracks, electronics, 						
• Intelligent/IoT AM par	ts drive the manufac	turing cycle (whic	n will be hybrid) th	hemselves (4.0		
approach).	i and i at a O C					
• Processes for thermally conductive & fire retardant, composite, Cermets, metal, carbon AM made products Develop convergent processes towards smart devices with multi-functionalities						
• •	•					
Increase production sp	•		ces (20 cm x 20 cn	n x 20 cm) can take		
many hours (>10H). Sho	uid be nice print fast	er				
Value chain segments	Modellir	ng	x Post Proce	ess		
	Design		x Product			
	x Material	l	End of Life			
	x Process		Complete	VC		
Current TRL	4-5	Targ	et TRL	6		
Type of Action	RIA					
Target Products	✓ Wear					
		ehold utensils				
		ors and Antennas				
		✓ Entertainment				
		e Parts & Repair				
Iliah awa at a line at t	✓ Packa					
High expected impact of						
		roduction capacity	,			
		Reduced time to market Increased business generated				
	Environmen	•	1			
		source saving				
	Better envir	-				
		umber of jobs				
	inter cubed in					

Action name 3D capt	turing technologies					
Action n. 7	Sector	r Consumer	Goods and Electronics			
Description of the challe	enge (current gap)	current gap)				
When personalised data	is used in the AM design to pro	vide tailored, persona	lised AM built products,			
	re (in an easy, accessible but sa	ife way) needs to be e	stablished			
Proposed activities						
	/tools that will enable usage of					
	metry e.g. SW/APP to 3Dscan /	•				
	elaborate. Cheap/Easy to use for	or high market penetr	ation.			
Value chain segments	x Modelling	Post Pro	ocess			
	x Design	Product				
	Material	End of L	ife			
	Process	Comple	te VC			
Current TRL	5-6	Target TRL	7			
Type of Action	IA					
Target Products	✓ Wearables					
	✓ Household utens					
	✓ Entertainment					
	-	 ✓ Spare Parts & Repair ✓ Declaration 				
	00	✓ Packaging				
Lligh ownersted impost or	• 740					
High expected impact or	n: <u>Economic & Industrial</u> Increased business ger	poratod				
	Increased number of p		lved			
	Increased production c	•				
	Environment & Social	apacity				
	Material resource savir	ng				
	Increased number of jo	•				
	Jobs reshoring in EU					

INDUSTRIAL EQUIPMENT AND TOOLING

Action name		approaches and tools for a nent parts	assembly of c	omplex mult	i-material and
Action n.		Sector	Inc	dustrial Equip	oment and Tooling
Description of the ch	allenge (current gap)			
Design and modelling	to integi	ate behaviours between f	orged and AN	1 parts	
Proposed activities					
merging process of thQuantify and createIncrease the chamb	ne compo e new bel per dimer		arger parts, w		
Value chain segment	s	 x Modelling x Design x Material x Process 		Post Process Product End of Life Complete VC	
Current TRL	5-6		Target TRL		7
Type of Action		IA	_		
Target Products		 ✓ Mould Inserts ✓ Scientific & Meas ✓ Tooling and guid ✓ Industrial AM Eq ✓ Industrial AM So ✓ High Performanc 	es uipments ftwares		
High expected impac	t on:	Economic & Industrial Increased product quality Increased production can Increased business gent Environment & Social Material resource saving Reduction of CO2 emisson Better environment	apacity erated g	mances	

Action name Hybrid	Manu	facturing: introduction of	AM proc	ess	es into existir	ng workflow	
Action n. 2		Sector		In	dustrial Equip	ment and Tooling	
Description of the challe	nge (e	current gap)					
	n of A	M requires inclusion with a	and emb	edd	ing with othe	r technologies in a	
hybrid setting							
Proposed activities							
	 Development of a higher number of solutions that cover different combination of AM processes 						
and other technologies such as subtractive ones (i.e. Laser cladding and milling processes and turning							
process, etc.)							
• Create/use standards for alignment of systems for complete workflow. Integration of the software system (Hybrid - cutting - deposition technologies - cleaning and re-deposition).						on of the software	
	-	-	-	e-a	eposition).		
	ects of	f the mix of 'hot' and 'cold'	process				
Value chain segments		Modelling		х	Post Process		
		Design			Product		
		X Material En		End of Life			
		x Process Complete VC					
Current TRL	5-6		Target 1	rrl		7	
Type of Action		IA					
Target Products		✓ Scientific & Mease		Ins	truments		
		✓ Tooling and guides					
		✓ Industrial AM Equipments					
High expected impact or	1:	Economic & Industrial		,			
		Increased product qualit	• •	ertoi	rmances		
		Increased business gene					
		Increased production ca	pacity				
		Environment & Social					
		Jobs reshoring in EU Better environment					
		Increased number of jol	าร				

Action name		tion: material and product testing and process monitoring for uality control of manufactured parts						
	3	Sector		ndustrial Equip	ment and Tooling			
Description of the cl	hallenge (o	urrent gap)						
To cope with the hes presented	sitation of	AM in this sector, a guideli	ne/route fo	r guaranteein _{	g quality should be			
Proposed activities	•							
the manufactured pa	 Outline a series of standard tests (non-destructive), specific for AM able to evaluate the quality of the manufactured parts Material properties at the microstructure. Process monitoring with closed loop parameters adaptation 							
Value chain segmen	its	Modelling x Design x Material x Process		x Post Process x Product End of Life Complete VC				
Current TRL	6		Target TRL		7			
Type of Action		IA/CSA						
Target Products		 ✓ Scientific & Measurement Instruments ✓ Industrial AM Equipments ✓ Industrial AM Softwares ✓ High Performance Tool Materials 						
High expected impa	ct on:	Economic & Industrial Increased product quality and performances Increased production capacity Increased number of private companies involved Environment & Social Material resource saving Jobs reshoring in EU Reduction of CO2 emission						

Action name Innovat	ive strategies, technologies	and processes increas	ing the dimensional and		
surface	accuracy of final parts				
Action n. 4	Sect	or Industria	al Equipment and Tooling		
Description of the challe	nge (current gap)				
To realise net shaped par	ts, most of the time post pro	cessing is required; ho	ow to optimize this? In		
parallel, search for new t	echniques leading to higher	surface properties wh	ile avoiding/reducing		
post-processing.					
Proposed activities					
• Try to understand if requests on surface finishing and dimensional tolerances are necessary					
 Innovative techniques, which reduce/avoid post processing. 					
• Consider these limits during the design phase, in order to better understand the parts and					
overcome the problem.					
• Develop solutions for finishing of internal channels					
• Find solutions to reduce or tailor residual stress during process (consolidation objectives for thermal					
 treatment) and process simulation Investigate process parameters to improve surface parameters, in particular on down-skin regions. 					
Value chain segments					
value cham segments	Modelling	x Post I	Process		
	Design	Design Product			
	x Material	X Material End of Li			
	x Process		nete vc		
Current TRL	5-6	Target TRL	7		
Type of Action	IA				
Target Products	✓ Mould Inserts				
		 Scientific & Measurement Instruments 			
		✓ Industrial AM Equipments			
High expected impact on					
		ality and performance	es		
	Increased IPR protect Increased business g				
	Environment & Socia				
	Material resource say				
	Increased recycling	0			
	Jobs reshoring in EU				

		cost-effective machines (including robotic machines with artificial elevation ele				
rate						
Action n.	5	Sector	lr	ndustrial Equipment an	d Tooling	
Description of the ch	allenge	current gap)				
	•	lower cost per part and fur				
		nachines for finishing large				
	, assistir	g laser or electron beam w	ith sources v	with alternative cheape	r	
technologies etc.).						
Proposed activities		he next position into the h	بنام مميرمامي	-		
	-	he part position into the bu Nachine producer to increa	•		rkhoode	
	•	tion of artificial intelligence			n Kileaus,	
 New technology de 		•		23		
	•	e investment in the second	generation	of AM Machines		
Value chain segment			generation	7		
value chain segment	5	x Modelling	Х	Post Process		
		x Design	х	x Product		
		x Material		End of Life		
]		
		x Process	Complete VC			
Current TRL	4-5		Target TRL	6		
Type of Action		RIA				
Target Products		 Industrial AM Equ 	uipments			
High expected impac	t on:					
Increased product quality and performances						
			5			
		-	h .			
High expected impac	t on:	Economic & Industrial Increased production ca Increased product quali Reduced time to marke <u>Environment & Social</u> Material resource savin Jobs reshoring in EU Increased number of jo	ty and perfo	rmances		

	Novel man production	Ifacturing processes increasing q	facturing processes increasing quality and consistency of powder			
Action n.	6	Sector	Industrial Equipment and Tooling			
Description of the	e challenge	(current gap)				
Material quality a	nd control	s a key factor for a quality contro	lled AM manufacturing process			
Proposed activitie						
 Optimization of the feedstock manufacturing process in order to narrow the properties range Ceramic filled resins development for large size parts Deepest monitoring of the quality control parameter during the manufacturing process. Powder characterisation and definition of powder properties by process machine 						
Value chain segm	ients	 Modelling Design X Material X Process 	 Post Process Product End of Life Complete VC 			
Current TRL	6	Targ	et TRL 7			
Type of Action		IA				
Target Products		 ✓ Scientific & Measurement Instruments ✓ Industrial AM Equipments ✓ High Performance Tool Materials 				
High expected im	pact on:	<u>Economic & Industrial</u> Increased business generate Increased production capacit Increased product quality and <u>Environment & Social</u> Material resource saving Jobs reshoring in EU Reduction of CO2 emission	у			

Action name La	arger certi	fied build chambers				
Action n.	7	Sector	In	dustrial Equip	oment and Tooling	
Description of the	challenge	(current gap)				
AM processes build	ding box qı	ality and - control is a key f	actor for a q	uality controll	led AM	
manufacturing pro	cess					
Proposed activities	•					
• Understand what could be defined as "large part" and the relative market (is it worth it to do it in AM?)					orth it to do it in	
 Study and design 	new solut	ions for the use of more that	an 1 energy s	ource in the b	ouild envelope	
•		array light engine process a				
	•	r large size (filled) resin bas				
	ue to cost	of an AM large part – is it co	ost effective t	to manufactu	re large parts using	
AM?						
Value chain segme	ents	Modelling	x	Post Process		
		Design	x	x Product		
		Material		End of Life		
		x Process		Complete VC		
Current TRL	6		Target TRL		7	
Type of Action		IA				
Target Products		🖌 Industrial AM Equ	uipments			
High expected imp	act on:	<u>Economic & Industrial</u>				
		Increased production capacity				
		Reduced manufacturing				
		Increased product quality and performances				
		Environment & Social				
		Material resource saving	3			
		Jobs reshoring in EU				
		Increased number of jo	bs			

g materials and moulds for AM p	rocesses			
Sector	Industrial Equipment and Tooling			
current gap)				
ed				
aterials are also required for smal	l series (e.g. In injection molding)			
0				
f plastic mould, that could have di	fferent from the inner			
microstructures.				
 Develop a composite materials based on plastic matrix with high thermal conductivity and low thermal expansion 				
Modelling	x Post Process			
Design	x Product			
	End of Life			
x Process	Complete VC			
Target	t RL 6			
RIA				
	Materials			
Increased product quality and performances				
-				
	Sector Current gap) ed fic AM processes (Laser - EB). aterials are also required for smale with actual materials ling plastic mould, that could have di als based on plastic matrix with hi Modelling Design X Material X Process Target RIA ✓ Mould Inserts ✓ Tooling and guides ✓ High Performance Tool N Economic & Industrial Reduced time to market Increased production capacity			

Action name So	oftware fo	r graded materials and densi	ity				
Action n.	9	Sector	Ir	ndustrial Equip	oment and Tooling		
Description of the	challenge	(current gap)					
It is important to d	evelop/op	imise softwares tuned for grades and the second	aded mate	rials and hybri	id process that can		
be easily integrated	be easily integrated in open platform						
Proposed activities	Proposed activities						
 Design and simul 	ation of gr	aded materials and hybrid pr	ocesses				
 Prediction of mat 	terial part	specification based upon pow	vder, techr	ology, parame	eters		
Value chain segme	ents	x Modelling		Post Process			
		x Design		Product			
		Material		End of Life			
		Process		Complete VC	2		
Current TRL	6		Target TRL		7		
Type of Action	U	IA			7		
Target Products		✓ Industrial AM Soft	wares				
langeen louuets		 ✓ High Performance 		rials			
High expected imp	act on:	Economic & Industrial					
		Increased production cap	acity				
		Increased business generated					
		Reduced time to market					
<u>Environment & Social</u>							
		Jobs reshoring in EU					
		Increased number of job	S				
		Material resource saving					

Action name	New equip nanoscale	nent and technologies for e	xpanding a	dditive manuf	acturing towards	
Action n.	10	Sector	li	ndustrial Equip	oment and Tooling	
Description of th	e challenge	(current gap)				
To expand the ac that scale should		ology towards micro and na	noscale, pro	ocesses and ec	quipment serving	
		leveloped				
	 Proposed activities Development of materials and associated health and safety protocols suitable for nano-scale 					
 Development of production. 	or materials	and associated health and sa	nety protoc	ois suitable to	r nano-scale	
•	nat could be	defined as "small feature" a	nd the relat	ive market		
		t for nano-scale 3D structure				
•		polymerisation deliver micr		s, to be expand	ded and extended	
Value chain segn	nents	x Modelling	x	Post Process	6	
		x Design	x	Product		
		x Material End of Life				
		x Process		Complete V	2	
Current TRL	4-!		Target TRL		6	
Type of Action		RIA				
Target Products		🗸 Industrial AM Equ	ipments			
High expected in	npact on:	Economic & Industrial				
		Reduced manufacturing cost				
		Increased production capacity				
		Reduced time to market				
		Environment & Social	Environment & Social			
		Jobs reshoring in EU				
		Increased number of jo	os			
		Material resource saving				

CONSTRUCTION

Action name :	wing processing knowledge an ruction sector	d availability of AM ma	terials for the
Action n. 1		Sector	Construction
Description of the chall	lenge (current gap)		
properties for the proce drying. Note: Most production and are far less sensitive meet narrow specificati processes and design ru Proposed activities • Study on interaction b solidification, binding be	on between process and mater ess like mixing, pumping, apply processes in the construction s e for small changes of material ions with which te industry is n ules are strongly related. between material properties ar etween layers, shrinkage, etc. I e size distribution and consisten Modelling Design	ing by extrusion, sprayin sector are far more robu l properties. AM feed sto not familiar. Developmen nd AM process like rheo Determination of charac ncy for optimal AM proc	ng or binder jetting, ust then AM processes ock materials need to nt of materials, logy, shear rate, fast cteristic materials essing)
	XMaterialXProcess	End of Comp	f Life lete VC
Current TRL	4-5	Target TRL	6
Type of Action	RIA		
Target Products	 design, heritage residence of the second sec	e bridges, floors, walls	or garden and landscape army buildings, lunar
High expected impact o		iality and performances ership ing cost <u>/</u> ving	

Action name Met	hodologies to integrat	e concrete reinforcement	ts in AM constru	iction	
Action n.		Sector	· Co	onstruction	
Description of the ch	allenge (current gap)				
Concrete reinforcement to withstand tensile and bending forces is mostly not possible in combination with AM. Development of methodologies to integrate reinforcements in to the AM-materials is needed. Note: New lightweight (natural) fibre materials are available and might be a solution for an alternative braiding - integration into the construction. Out of the box concepts for hybrid solutions should be encouraged.					
Proposed activities					
and development of a distribution w.r.t. ten	applying these fibres/re	ment materials (e.g. steel ods into/onto the construc perties. Hybrid technologic ould be considered.	ction. Simulation	of optimal fibre	
Value chain segment	X Design		X Post Process Product		
	X Materia X Process		End of Life Complete VC		
Current TRL	4-5	Target TRL	6		
Type of Action	RIA				
Target Products	design, ✓ Structur ✓ Special I base)	 ✓ Unconventional buildings (prototypes, decorative façades, art, design, heritage reconstruction) ✓ Structural parts like bridges, floors, walls ✓ Special buildings (army, nuclear disaster, army buildings, lunar base) ✓ Organic shaped complex (structural) parts with integrated 			
High expected impac	Increased p Reduced ti Increased <u>Environme</u> Increased p Jobs resho				

Strategies to	Strategies toward standardisation: AM alignment with existing standards and					
Action name building cod	es and research for improv	ement of specificati	ons and standardisation			
of material p	properties.					
Action n. 3		Sector	Construction			
Description of the challenge (current gap)					
From one side, existing norms	and building codes will cor	ntinue to exist. AM ne	eeds to adapt/improve			
	to be able to meet their requirements. From another side, current material specifications are not					
accurate and discriminatory enough for AM. New standards should be prepared and drafted.						
Materials with accurate specs	are required in order to ol	otain reproducible AN	M-processes.			
Proposed activities						
 Find ways to specify the marginal 			a reproducible AM-			
process and introduce them in	nto a new version of the sta	indard.				
Value chain segments	Modelling	X Post Pr	ocess			
	X Design	Produc	t			
	X Material	End of	Life			
	X Process	Comple	ete VC			
Current TRL 4-5		Target TRL	6			
Type of Action	RIA					
Target Products	✓ Unconventional build	lings (prototypes, de	corative façades, art,			
	design, heritage reco	•				
	 ✓ Structural parts like bridges, floors, walls 					
	✓ Low risk parts with co	omplex shapes e.g. fo	or garden and landscape			
	decoration					
	 ✓ Special buildings (arn 	ny, nuclear disaster, a	army buildings, lunar			
	 base) ✓ Organic shaped complex (structural) parts with integrated 					
		olex (structural) parts	with integrated			
	functions					
High expected impact on:	Economic & Industrial					
	Reduced manufacturing					
	Reduced time to market					
	Increased number of private companies involved					
	Environment & Social					
	Jobs reshoring in EU Better environment					

Action name	Cost-e	fective	e printing equipment for o	construction application	tions		
Action n.	4			Sector	Construction		
Description of the	he challe	enge (o	current gap)				
		•	ng equipment is basic but f	•	-		
· ·			curacy, adaptability, size, a		tability etcetera is still to		
		o learr	n from experience in other	sector.			
Proposed activities							
		•	d printers and developmer	•			
the requirement cleanability)	s (speed	l, cost,	control, accuracy, adapta	bility, size, adaptabil	ity, transportability,		
Value chain segr	ments		Modelling	X Post Pi	ocess		
			Design	Produc	t		
			Material	End of	Life		
			X Process	Compl	ete VC		
Current TRL		4-5		Target TRL	6		
Type of Action			RIA				
Target Products			✓ Unconventional build	lings (prototypes, de	ecorative façades, art,		
			design, heritage reco	onstruction)			
			✓ Structural parts like k				
			-	omplex shapes e.g. fo	or garden and landscape		
			decoration				
			 ✓ Special buildings (arn 	ny, nuclear disaster,	army buildings, lunar		
			base) ✓ Organic shaped comr	Nov (structural) part	s with intograted		
			 Organic shaped comp functions 	blex (structural) part	s with integrated		
High expected in	mpact o	n:	Economic & Industrial				
	•		Reduced manufacturing	cost			
			Reduced time to market				
			Increased number of private companies involved				
			<u>Environment & Social</u>				
			Jobs reshoring in EU				
			Material resource saving	-			
			Increased number of jobs				

I Action name		f ergonomics, design and	art in 3D printing bui	lt environment and		
	elated tools		A .			
Action n.	5		Sector	Construction		
Description of the						
		include ergonomy, art, de		-		
	•	would bring invaluable din	•	constructions. Similarly		
	the consideration of ergonomy in tools is very big opportunity for safer tools.					
Proposed activitie						
		n and multidisciplinarity pr	ocess in relevant envi	ronment promoting		
ergonomy, art, des	sign and aes	thetic aspects.				
Value chain segme	ents	X Modelling	X Post Pro	ocess		
		X Design	X Product			
		Material	End of L	ife		
		Process	Comple	te VC		
Current TRL	5-6		Target TRL	7		
Type of Action		IA/CSA	^			
Target Products		 design, heritage reco ✓ Structural parts like b ✓ Low risk parts with condecoration ✓ Organic shaped complexity 	oridges, floors, walls omplex shapes e.g. fo	r garden and landscape		
High expected imp	oact on:	<u>Economic & Industrial</u> Increased number of pr New types of ventures s Potential for EU leaders <u>Environment & Social</u> Better quality of life Better personal health Material resource savin	started hip	ved		

Action name Co	-product	ion and user participation	for added-valu	e constructi	ion.
Action n.	6		Sector		Construction
Description of the o	hallenge	(current gap)			
Customer/Multi-Stakeholders participation in design of the building/structure.					
Proposed activities					
• Development of procedures and tools. Application of parametric design rules.					
Value chain segme	nts	Modelling X Design		Post Process Product	5
		Material		End of Life	
		Process		Complete V	C
Current TRL	5-6	5	Target TRL		7
Type of Action		IA/CSA			
 ✓ Structural parts li ✓ Low risk parts with decoration ✓ Special buildings base) ✓ Organic shaped comparison 		 design, heritage re ✓ Structural parts like ✓ Low risk parts with decoration ✓ Special buildings (at base) ✓ Organic shaped confunctions 	construction) bridges, floors, complex shapes rmy, nuclear dis	, walls s e.g. for gar saster, army	den and landscape buildings, lunar
High expected impact on:		Economic & Industrial Reduced time to mark Increased number of p New types of ventures <u>Environment & Social</u> Better quality of life Better personal health Jobs reshoring in EU	private compani s started	es involved	

Action name -		nstruction in AM, integra		ormation modelling
(BIN) S	systems	and topology optimisati		
Action n. 7			Sector	Construction
Description of the challe			19	- for all the transmitteness the
•	•	process/materials/function	•	afted. Integration with
•	-	rmation Modelling (BIM)	•	
structures, integration o	f new n	le: New level of knowledg naterials & reinforcement	ts, sensors functions	(acoustic, isolation,
	•	ation. New functionalitie	•	•
-	-	entation of all physical ar		-
	-	pository/source with info	ormation of the build	ling and is used as a
	e whole	e lifecyle of the building.		
Proposed activities				and the state of the
		s, material performance a		_
		ations on FEM to ensure	topology optimizatio	on (lightweight, minimal
material use, optimal re	morcer			
Value chain segments		X Modelling	Post Pr	rocess
		X Design	Produc	t
		Material	End of	Life
		Process	Compl	ete VC
Current TRL	4-5		Target TRL	6
Type of Action		RIA		
Target Products			• • • • •	ecorative façades, art,
		design, heritage reco		
		 ✓ Structural parts like k 		
			ny, nuclear disaster,	army buildings, lunar
		base)	- / - t)	e
		 Organic shaped comp functions 	piex (structural) part	s with integrated
Lligh own onto a line a star		functions		
High expected impact o	n:	Economic & Industrial	+	
		Reduced time to marke Increased product quali		-
		Potential for EU leaders		5
		Environment & Social	איייא	
		Material resource savin	σ	
		Better environment	D	
		Reduction of CO2 emiss	ion	

Action name	ction name Multimaterial printing and integrating components in to the build					
Action n.	8		Sector	Construction		
Description of the	e challenge (current gap)				
Currently used co	ncrete printi	ng equipment is monomat	erial only and a single p	rocess is applied.		
Proposed activitie	es					
•	• Development of new processes/hybrid processes to integrate components and multi material in to					
the build is requir						
Value chain segm	ients	Modelling	X Post Proce	ess		
		Design	X Product			
		X Material	End of Life	2		
		X Process	Complete	VC		
Current TRL	3-4		Target TRL	5-6		
Type of Action		RIA				
Target Products		 design, heritage rec ✓ Structural parts like ✓ Low risk parts with c decoration ✓ Special buildings (arr base) 	-	arden and landscape ny buildings, lunar		
High expected im	pact on:	<u>Economic & Industrial</u> Potential for EU leaders New types of ventures Increased product qual <u>Environment & Social</u> Reduction of CO2 emiss Material resource savin Jobs reshoring in EU	started ity and performances sion			

A cost-effective manufacturing processes with high production rates
d in industrially-relevant construction products
Sector Construction
ge (current gap)
res lower cost per part, i.e. higher productivity or lower machine cost. One
bridization, where more than one process is engaged in one machine. This
ncouraged by market interests and competition
erations.
equipment manufacturers from outside the AM scene to engage and
rojects needed for studying feasibility
mization
cision improvement
gn the part positions
osition paths to minimise delays
Is (different properties each one) having by this way different applications
al obtained.
Modelling X Post Process
Design X Product
X Material End of Life
X Process Complete VC
4-5 Target TRL 6
RIA
✓ Structural parts like bridges, floors, walls
✓ Special buildings (army, nuclear disaster, army buildings, lunar
base)
 Organic shaped complex (structural) parts with integrated
functions
Increased production capacity
Reduced manufacturing cost New types of ventures started
Environment & Social
Reduction of CO2 emission
Better environment

ENERGY

Action name		ature, reliable) and/o	ith improved performanc or smart (e.g. 4D printed n				
Action n.	1		Sector	Energy			
Description of th	e challenge (current gap)					
their life time is e performance ma	Material quality (e.g. powder composition morphology) and reliability of AM produced parts during their life time is essential for energy applications. Development of reliable, cost-effective, high performance materials (light weight, strong, high temperature, reliable) and special /smart materials. The action may include advanced research on 4D printed materials.						
Proposed activit	es						
alloys to be explo Development of fabrics, and wood • Lightweight ma • Extreme opera • Improved dyna dynamic propert resistance ceram • Development of • Development of • Expanding mat	ored programmable d. aterials (e.g. t ting temperatimic (fatigue) ies and the de ic particles in of materials w of new routes of wire feedst erial research	le materials by 4D prin itanium alloys) tures superalloys for t materials properties: evelopment of advand metal matrix vith improved creep a for powder production ock with chemistry tan towards broad indus	idated for AM processes, a nting, starting for example curbine components Development of new allow ced composites including h nd oxidation resistance on to enable cheaper powe ilored for AM applications stry and low or medium-va-	by carbon fibre, rubber, ys with improved high mechanical ders			
Value chain segn	nents	Modelling Modelling Design Material Process 	Post Product Product End of I Comple	t Life			
Current TRL	4-5	1	Target TRL	6			
Type of Action		RIA					
Target Products							

Action name high temper	Development of new materials with improved performances (light weight, strong, high temperature, reliable) and/or smart (e.g. 4D printed materials, sensorised materials etc.)					
High expected impact on:	<u>Economic & Industrial</u> Increased product quality and performances Increased business generated Increased production capacity <u>Environment & Social</u> Material resource saving					
	Jobs reshoring in EU Increased recycling					

Action name Proc	ess of ne	w multi-materials/mu	lti-voxel materials			
Action n. 2			Sector	Energy		
Description of the cha	allenge (current gap)				
Enabling the use of m	ulti mate	rial /multi-voxel mater	ials, graded material in	cluding reliable modeling		
tools and optimized p	rocesses					
Proposed activities						
 Development of new machine concepts (new printing heads) e.g. for graded material/multi-voxel properties and multi material combinations and the development of modelling tools to support this activity Fatigue and fracture toughness properties; effect of defects 						
 Development of pro 	ocess par	ameter required for mu	ulti-materials AM			
 Residual stress in m 	aterials,	caused by AM process	and miss-match of diffe	erent material properties		
(i.e. elastic modulus a	nd coeffi	cient of thermal expan	sion)			
 New data-format to 	overcor	ne STL format and be a	ble to define voxels of t	he part (important for		
gradient structures)						
Value chain segments	5	Modelling	Post P	rocess		
		Design	Produ	ct		
		x Material End of Life		Life		
		x Process	Comp	ete VC		
Current TRL	2-3		Target TRL	4-5		
Type of Action		RIA				
Target Products		 Turbines parts 	5			
		 Oil and gas in 	dustry products			
		 Renewable Energy industry components 				
		✓ Energy storage				
		 Electromechanical and 3D electronic components 				
		✓ Floating Platforms components				
		-	elling, prototyping and	design		
	h	✓ Spare parts &				
High expected impact on: <u>Economic & Industrial</u>						
Increased production capacity						
		Potential for EU leadership Increased product quality and performances				
		Environment & Socia		3		
		Increased recycling	<u></u>			
		Material resource sa	ving			
			•			
	Reduction of CO2 emission					

Action name Impro	oved process control and repro	ducibility of nozzle-base	d AM techniques			
Action n. 3		Sector	Energy			
Description of the chal	llenge (current gap)					
Repeatability, reproduc	cibility and performance of AM	processes can be improv	ed using knowledge			
and tools, in order to g	et predictable outcome of the p	process. Lack of availabilit	ty of suitable			
	r AM; Incorporation into existin	g machines to control qua	ality during building			
process. Linked with cr	oss-cutting gap.					
Proposed activities						
•	nal field mapping (from machin	•				
	anical properties, dimensional		ess etc. coupled with			
	e characteristics and process pa					
-	scale analysis methods by visio	n systems and image proc	cessing			
 In line control toward Make use of establish 		donosition modellin = /F	DNA) inication			
	hed know-how in polymer fused	a deposition modelling (F	Divij, injection			
-	Injection Moulding (PIM) "design" and "modelling" VC se	amonts in design and n	rocess iterations			
	nalysis: design against fatigue a					
Value chain segments						
value enam segments	Modelling	x Post Proc	cess			
	Design	Product				
	Material	End of Lit	fe			
		Complete				
	x Process					
Current TRL	4-6	Target TRL	7			
Type of Action	IA					
Target Products	✓ Turbines parts					
	 ✓ Oil and gas ind ✓ Denovable En 					
		 Renewable Energy industry components Energy storage 				
		 ✓ Energy storage ✓ Electromechanical and 3D electronic components 				
		 ✓ Electromechanical and 3D electronic components ✓ Floating Platforms components 				
✓ Spare parts & repair						
High expected impact						
		Potential for EU leadership				
Increased business generated						
New types of ventures started						
	Environment & Social					
	Jobs reshoring in EU					
	Increased number of	-				
	Material resource saving					

I Action name	emonstration of AM energy sector	higher productivi	ty and cost-effectiv	e manufacturing in the			
Action n.	4		Sector	Energy			
Description of the	challenge (current ga	ap)					
Economic use of <i>i</i>	M requires lower cos	t per part, i.e. High	ner productivity or l	ower machine cost.			
Proposed activiti	S						
design for betterby the developmeDevelopment o	 Higher throughput, by intelligent process management precision = slow, large structures = speed, design for better productivity and cost efficient use of AM technology - All these will be encouraged by the development and demonstration of market ready AM processes. Development of low price materials. Reduction of production/printing time. 						
Value chain segm	ents Mo	delling sign terial ocess	x Post Pr x Produc End of Comple	t Life			
Current TRL	4-5		Target TRL	6			
Type of Action	RIA						
Target Products		Energy storage Electromechanical Floating Platforms Concept modelling Spare parts & repa	industry compone and 3D electronic of components g, prototyping and c	components			
High expected im	Increas Increas New ty <u>Envirol</u> Reduct Better	<u>mic & Industrial</u> sed production cap sed product quality opes of ventures st <u>oment & Social</u> sion of CO2 emission environment shoring in EU	y and performances arted				

Action name Increa	ising ma	anufacturing performances through hybrid manufacturing					
Action n. 5			Sector	Energy			
Description of the chal	Description of the challenge (current gap)						
	/ of AM	by integrating or combining	ng AM with other proc	esses in the			
manufacturing stream							
-	Proposed activities						
and other technologies process, etc.)	• Reliable interfaces for optical measuring-systems for automatic change from a technology to the						
Value chain segments		Modelling	x Post Proc	cess			
		Design	Product				
		Material	End of Lif	e			
		x Process	Complete				
	_						
Current TRL	5		Target TRL	6-7			
Type of Action							
Target Products		 ✓ Turbines parts ✓ Oil and gas indust 	ny products				
		0	y industry component	c			
		 ✓ Energy storage 	y maastry component	5			
		•• •	and 3D electronic co	mponents			
		✓ Floating Platform					
		-	g, prototyping and des	sign			
		✓ Spare parts & rep	air				
High expected impact on:		Economic & Industrial					
		Increased production ca					
		Increased product qualit	· ·				
		Reduced time to market					
		Environment & Social					
		Jobs reshoring in EU					
		Material resource saving	5				
		Better environment					

Action name	tion of larger structures throu	igh AM technologies, robo	otics and artificial			
Action n. 6		Sector	Energy			
Description of the challe	enge (current gap)					
Increasing the size envel	opes and the productivity of th	ne printers at a reasonable	cost is needed.			
Proposed activities						
 Development of new r 	nachines with larger build enve	elopes, higher productivity	, and integrated			
post-processing	post-processing					
	o be reduced towards the end					
	such as reliability of the proces	C	•			
	ng robotics, in-line control syst	-	•			
	n of faults with 100% certainty	/, achieve consistency of pr	roperties and			
Value chain segments	large build area and volume.					
value chain segments	Modelling	x Post Proces	SS			
	Design	x Product				
	x Material	End of Life				
	x Process	Complete \	VC			
Current TRL	4-5	Target TRL	6			
Type of Action	RIA					
Target Products	 ✓ Turbines parts 					
	✓ Oil and gas indu					
		ergy industry components				
	 ✓ Energy storage ✓ Electing Distfer 					
	 ✓ Floating Platfor ✓ Concept model 	-	a a			
 ✓ Concept modelling, prototyping and design ✓ Spare parts & repair 						
High expected impact o						
	Increased production					
	Reduced time to mark					
		Increased product quality and performances				
	Environment & Social					
	Jobs reshoring in EU					
	Material resource sav	ing				
	Better environment					

Action name		proving surface qua	lity : new materials	, processes and post-	
Action n. 7	cesses		Sector	Energy	
Description of the ch	allenge (curr	ent gap)			
-	the part. Ne rocesses. ffect of post w materials a ffective surfa	w materials, process processing operation and processes avoidi	ses (e.g. Avoiding the ns and automation on ng the need for posi	t-processing	
 Reduce and control 	-	e of powder			
	•	•	ost (time, money) v	s. material quality (residual	
stress, defect size, str					
Value chain segment		Modelling	x Post	t Process	
		Design	Pro	duct	
		Material	 Fnd	of Life	
	x	Process		nplete VC	
Current TRL	4-5		Target TRL	6	
Type of Action	IA				
Target Products		✓ Turbines parts			
		 Oil and gas ind 	ustry products		
		✓ Renewable Energy	ergy industry compo	onents	
		✓ Energy storage	2		
		 ✓ Electromechanical and 3D electronic components 			
		✓ Floating Platfo	rms components		
		✓ Concept mode	lling, prototyping ar	nd design	
		✓ Spare parts & I	repair		
High expected impac	t on: <u>E</u>	conomic & Industria	<u>I</u>		
	Ir	ncreased product qu	ality and performan	ces	
	Ir	creased business g	enerated		
	Р	otential for EU leade	ership		
	E	nvironment & Social			
	Ir	creased number of	jobs		
	Jo	obs reshoring in EU			
	N	1aterial resource sav	ving		

Action name			nd modularity factors to promote de-localised manufacturing in the						
	energy	secto	r	Casta	-	E a a a a a			
Action n.	8			Secto	r	Energy			
Description of the challenge (current gap)									
Equipment and machinery for accelerated and large scale AM production should be developed with									
scalability and modular behaviour in mind. For future energy needs, de-localised manufacturing will									
become the standard in order to lower costs and accelerate projects.									
Proposed activities									
AM processes, based on broad electric control, software limits boundaries, sustainability and • System and machine develop system delivery - and build stra products. • For practical development; d			oment has to meet cost and size goals by looking beyond immediate ategy for further development and relevance to large, medium-value etermine system interfaces that are influenced or will influence steps to overcome or initiate new research. Modelling x Post Process x Product						
					End of Life Complete V	с			
Current TRL		1-3		Target TRL		4-5			
Type of Action			RIA						
Target Products		 ✓ Turbines parts ✓ Oil and gas industry products ✓ Renewable Energy industry components ✓ Energy storage ✓ Floating Platforms components ✓ Concept modelling, prototyping and design ✓ Spare parts & repair 							
High expected impact on:		<u>Economic & Industrial</u> Increased product quality and performances Increased production capacity Increased business generated <u>Environment & Social</u> Material resource saving Increased number of jobs Increased recycling							

Action name		including all simulations a		s that can enable the					
pr	oduction	of "equivalent" spare par	ts in a few days						
Action n.	9		Sector	Energy					
Description of the challenge (current gap)									
Today digital representation of the part produced has conflicting representations: the CAD-model, the									
STL file and possibly a point of cloud of scanned coordinates. All these has to be taken care of in long									
term storage structures (LOTAR-type). Today no such storage system using standards apparently exist									
Proposed activities									
 Coordination between ISO 10303, ASTM, etc Looking at the object in a lifecycle perspective 									
allowing info and all aspects related to the object creation process are available for the future to									
understand and improve or reproduce the part.									
 Development of digital twin technologies for rapid and cost-effective spare part manufacturing 									
Value chain segme	nts	x Modelling	x Post Pro	x Post Process					
		x Design							
		x Material End of Life							
		x Process	Complet	e VC					
Current TRL	5		Target TRL	6-7					
Type of Action	3	IA/CSA		0,					
Target Products		✓ Concept modelling, prototyping and design							
		✓ Spare parts & repair							
High expected impact on:		Economic & Industrial							
5 1 1		Increased product quality and performances							
		Increased production capacity							
		Increased business generated							
		Environment & Social							
		Material resource saving							
		Jobs reshoring in EU	Jobs reshoring in EU						
		Increased number of j	obs						