Industrie 4.0 The Aachen Approach

Axel Demmer
Fraunhofer Institute for Production Technology IPT, Aachen (GER)
Fraunhofer Additive Manufacturing Alliance

Paradigm shifts lead to the announced "fourth industrial (r)evolution"

1712: Steam engine

1st industrial revolution

by introducing mechanical manufacturing facilities

End of 18th century

1913: Assembly-line production

2nd industrial revolution

by introducing mass production based on the division of labor (Fordism, Taylorism)

Begin of 20th century

1969: PLC

1973: Six-axis robots

3rd industrial revolution

by applying electronics and IT to extended production automation

Begin of the 1970's

Computerization/ automation

1985: Breakthrough of CIM

Integration of production

Integration concepts regarding information processing in manufacturing companies unifies production planning and control supported by CAD/CAM/CAQ

Begin of the 1980's

Integration concept inspired by business informatics

Industrialization

Rationalization

Source: DFKI (2011); Adomeit (2008); Gaswerk Augsburg; KUKA; reddinpartners, Siemens

Development during the last decades – Requirements for Industrie 4.0

Availability of computer hardware

Progress in digitalization

Availability of Networks

CIM

Embedded

ERP Data

PPS System

Logical Data Model Programming Condition

Supply **B2B**

Client/Server Systems

Monitoring

Chain

Storage Capacity VIBN

Database organization

B₂C

Intranets

Software Web 2.0

Virtualization

Digital Factory_{DI} Fieldbus^{ZigBee}

Bluetooth Mobile M2M Communication

e source: Siemens A

VISION

4th industrial revolution

through consistent, intelligent networking in manufacturing

Today

Intelligent networking in production – from CIM to Industrie 4.0 & Smart Service World

- "Fusion of virtual und physical world" towards "Internet of things and services"
- "Merging technical processes with business processes"

Industrie 4.0 makes global network complexity manageable and enables the realization of economies of scale and scope

Economies of Scale

Source Pictures: mvc-brenig.de; thedetroitbureau.com; vertikal.net; wikimedia.org; pagenstecher.de; daimler.com; pillenstein.de

Legend —Imaging capability of complexity

The Aachen Approach

IT-Globalisation

- Big Data
- Assessing and Storage in the cloud
- Data mining, safety, security
- High Speed Computing

Local data storage

- Adaptation by sensors
- Intuitivity, reliability
- IT-Openness
- Cost-efficiency
- Robustness

The Aachen Approach

© WZL/Fraunhofer IPT

Industrie 4.0

Virtualization and Cross-Linking

Globalization and Complexity

Digital Production

Cyber Physical Production Systems

Virtualization and Cross-linking

© WZL/Fraunhofer IPT

Cyber Physical Systems

Cyber-Physical-Systems (CPS) are systems with embedded software, integrated for example in:

- equipment,
- buildings,
- transportation means,
- medical processes
- logistic processes
- or Production Systems (CPPS)

Cyber-Physical Production Systeme (CPPS) ...

- ...gather data with production-integrated sensors and metrology systems in real-time,
- ...record and analyse data for the creation of models,
- ...interact actively with actors of the physical and digital world as well as with human
- ...are connected via digital communication interfaces with theirselves and with the Internet of Things.

A Cyber-Physical-System (CPS) is the smallest element of an intelligent object in the architecture of Industrie 4.0

Source: Cluster of Excellence "Integrative Production Technology for High-Wage Countries", "Cyber-Physical-Systems" – acatech POSITION/Springer Verlag, Siemens

Expectations of Manufacturing Companies towards Industrie 4.0

First Time Right

Continuous optimization of machining processes

Efficiency down to production batch size 1

Image Sources: Daimler, Siemens PLM, WZL

Overall objectives

First Time Right

Continuous optimization of machining processes

Efficiency down to production batch size 1

Virtualization of product, production means and production

Cross-linking of manufacturing resources and information

Production control with virtual technologies

Image Sources: Siemens PLM, Index-Werke, WZL

Industrie 4.0

Axel Demmer Fraunhofer Institute for Production Technology IPT, Aachen (GER) Fraunhofer Additive Manufacturing Alliance

